
Tuning SoCs using the Global Dynamic Critical Path

Hari Kannan
1
 Mihai Budiu

2
 John D. Davis

2
 Girish Venkataramani

3

 1
 Computer Systems Lab,

2
 Microsoft Research,

3
 Mathworks, Inc.

 Stanford University Silicon Valley

ABSTRACT

We propose using a profiling-based technique
(Dynamic Critical Path) to guide SoC optimization.
Optimizing SoCs composed of many modules
involves exploring a large space of possible
configurations (exponential in the number of
component modules). We present this optimization
technique applied to a Globally Asynchronous
Locally Synchronous (GALS) RTL design.
Furthermore, we investigate the loss of precision
when abstract versions of hardware modules are
used for the critical path computation. Using the
critical path provides very fast convergence
towards optimal or near-optimal solutions when
analyzing large configuration spaces by optimizing
the design for composite optimization metrics, such
as energy-delay.

I. INTRODUCTION

Contemporary SoCs are composed of tens or
even hundreds of IP blocks, each of which can be
independently tuned, giving rise to a huge space of
possible configurations. The blocks used by
manufacturers in their designs may come from a
variety of internal and external sources.
Regardless of the SoC IP block source, the internal
operation of modules and associated corner cases
may not be well understood, or transparent to the
SoC designers. This is further complicated by the
fact that third party vendors of IP blocks do not
provide source code access for their modules. All
of these factors make performance analysis and
optimization of SoCs or Multi-Processor SoCs
(MPSoCs) extremely difficult.

Recent work has established dynamic critical
path (or global critical path, GCP) analysis [6] [13]
as a powerful tool for understanding and optimizing
the performance of highly concurrent hardware-
software systems. The GCP provides valuable
insight into the control-path behavior of complete
systems, and helps identify bottlenecks. It tracks
the chaining of transitions of the key control signals
and identifies the modules or IP blocks that
contribute significantly to the end-to-end
computation delay.

In this paper, we propose using the GCP to
identify and remove system-wide bottlenecks in

MPSoCs. Using this knowledge, designers can
better direct their optimizations: to boost the
performance of underperforming modules, lower
power consumption, reduce excessive resources,
etc. In the absence of such a tool, designers are
often forced to simulate many combinations of the
various possible configurations [4] in order to arrive
at an optimal design. We use the GCP analysis to
drive a directed search to allow designers to
efficiently explore the search space for
configuration parameters, arriving at optimal or
near-optimal configurations much faster than
exhaustive searches. Using a power-delay product
as the exemplar cost function, our algorithm
efficiently discovers the optimal combination of
parameters for the IP blocks that constitute the
SoC design. Alternative SoC optimization
techniques based on numerical design
optimization, such as simulated annealing [7], or
evolutionary algorithms [5] require significant
simulation time, especially for large designs. This
problem is exacerbated by the lack of intuition
about the functioning of unfamiliar (often third-
party) IP blocks, and by the extremely large search
space, exponential in the number of IP blocks.

II. Global Critical Path Definition
The formal definition of the Critical Path in

operations research is “the longest path in a
weighted acyclic graph” [13]. An informal notion of
critical path has been used for a long time at
various levels of system views, including
asynchronous circuits [3], modeled as Petri nets
[15] and synchronous circuits [6][11], as well as
software modules [12], network protocols [1] and
multi-tier web services. The critical path is also
related to critical cycles in pipelined processors [2].
The GCP should not be confused with the
traditional notion of static critical path in
synchronous circuits, which is defined to be the
longest of the possible signal propagation delays
between two clocked latches. In contrast, the
dynamic GCP is related to the concept of
instructions per cycle (IPC) for processors, since it
is dependent on a particular workload (which is
why the path is called “dynamic”).

Modeling a hardware circuit as a graph [14],
the nodes in the graph are functional units and the
edges are signals, shown in the rounded box in
Figure 1. To define the GCP, we have to consider
an execution of the circuit, for a particular input;
then we “unroll” the execution of the circuit
producing a timed graph. Each relevant time
moment contains a replica of the entire circuit as
shown in Figure 1.

The edges of the timed graph are signal
transitions: an edge between (f1, t1) and (f2, t3)
represents a signal leaving functional unit f1 at
time t1 and reaching f2 at time t3. Edges from a
functional unit to itself such as (f2, t1) to (f2, t2)
represent computation delay. The longest chain of
events in the timed graph is the GCP. Normally,
only control signals need to be considered as parts
of the GCP, because data signal transitions do not
influence the timing of outputs.

III. Applying GCP to SOCs
GCP is easy to compute for asynchronous

circuits because all signal transitions are explicit.
Applying GCP to synchronous circuits presents
many challenges that we address in this section. In
particular, we discuss how GCP can be applied in
practice for analyzing SoC designs with the added
complexity of multiple clock domains.

A. Computing the GCP
The key idea for computing the GCP over all

the modules is to track dependencies between
control signals. We rely on an algorithm proposed
in [6] for computing the GCP. For each module, we
track the input and dependent output transitions.
Whenever an output signal makes a transition (i.e.,
the module produces a new output value), we must
be able to attribute it to a previous input transition,
which triggered the computation. We only consider
the last arrival input that caused this output (an
output may depend on multiple inputs). We can
construct the GCP using only local module data by
stitching the local transitions, starting with the last

transition of the system, and going back to the last
arrival input which caused that transition.
Recursively, this last arrival input becomes the last
transition, and the algorithm is repeated until the
start state is reached. This chain of edges is the
GCP. The GCP is usually a large data structure, so
we represent the GCP compactly as a signal
histogram: for each signal of the circuit we count
how many times its transition appears on the
critical path. A signal with a high count is more
critical than one with a low count.

B. GCP Accuracy
We are interested in understanding the loss of

fidelity that can occur by using approximate RTL
models of the hardware. The GCP computed using
the lowest level RTL is the ground truth GCP; the
GCP computed using abstracted models is just an
approximation. Because we apply the critical path
analysis to the RTL design, we have the flexibility
of examining the critical path at a variety of levels:
within the modules, at the module interfaces, or
higher. We could also apply the GCP to abstracted
views of the design such as electronic-system-level
(ESL) models, or transaction-level models [7], but
GCP fidelity is a concern (since these models are
not always derived from the underlying RTL).

Given our definition of the GCP, there are
three requirements for a model to produce an
accurate estimate of the GCP: (1) it must model all
concurrent hardware blocks, (2) for each hardware
block, it must model the correct dependencies
between input and output control signals, and (3) it
must model transaction interleaving in the correct
order (e.g., the arrival ordering of two input signals
should not be swapped).

C. GCP for Synchronous Circuits
Unfortunately, applying this methodology to

synchronous RTL-level circuits is not entirely
straightforward. The GCP is very easy to build for
handshake-based asynchronous circuits, because
all signal transitions are explicit – and the critical
path is composed of signal transitions. In clocked
circuits the computation of the GCP has to account
for the following issues, which we discuss in more
depth in a companion technical report [9]:
1. I/O dependences in control FSMs are implicit.
2. Don’t cares in control logic cause false I/O

dependences.
3. Events that occur in the same clock cycle can be

ordered in several ways.
4. Implicit signal transitions: some signals never

change value, but still imply two transitions.

 Figure 1: The Global Critical path is the longest chain of
 events in the timed graph.

5. Inter-module handshake is sometimes implicit,
such as in the presence of global stall signals.

6. Pure sources and sinks in the dependency
graph create a circuit graph that is not strongly
connected.

7. Signals with fanout: a signal with fanout may be
last arrival only for some of the consumers.

8. Modules with multiple outputs: the criticality of
each output must be considered separately.

9. Systems with non-deterministic inputs
(interrupts): the hardware path exercised by the
interrupt response will be the critical path. Since
these inputs are by definition non-deterministic,
no two runs of the global critical path will provide
the same results.

IV. Evaluation System
We use an SoC composed of 6 modules that

can be independently optimized, each of them in a
separate clock domain (CD): two LEON3 SPARC
V8 processors [8], a co-processor [8], DMA engine,
DRAM controller and shared AMBA bus, as shown
in Figure 2.

A. VHDL-level Instrumentation
We modified the VHDL source code of the

LEON3 design to log the transitions of control
signals by adding request (req) and acknowledge
(ack) signals between adjacent pipeline stages,
without modifying the functionality. When a pipeline
stage is ready to send data to the succeeding
stage, it asserts the req signal (same as the write
enable signal of the latch register). The ack signal
is asserted when the following stage is ready to
operate on the data. Overall, we annotated less
than 0.2% of the signals in the SoC. Our annotated
code increased the system’s line count by 1%.
Finally, to explore the impact of a large
configuration space, we added support for multiple
clock domains (CD). Each component, including
the bus, is in a separate CD; the frequency of each
CD can be adjusted independently.

SoCs contain third party IP blocks for which
designers do not always have source code access.
We emulate this case by treating the coprocessor
and DMA engine as black boxes. For these IP
blocks we only use the control signals at the
interfaces when computing the GCP, thus reducing
instrumentation effort, but potentially sacrificing
fidelity.

V. Experimental Evaluation
We perform cycle-accurate behavioral

simulation of the design’s RTL using ModelSim 6.3
(structural simulation of the system can be used
and should produce identical results). Logging all
control signals in our system did not increase the
simulation time.

SoC designers impose design performance
constraints that can be specified by cost functions
such as power-delay, area-delay, etc. Cost
functions typically include factors such as
performance coupled with chip power, area, or
other metrics. We define our example cost function
as the power-delay product (PD), summed over all
the components in the SoC:
 PD = Power x Delay = �(CiVi

2
fi) x (Exec. Time)

1

We report normalized power-delay results with
respect to the initial configuration. In all of our
experiments, we execute a different small,
synthetic benchmark on the processors. The main
processor executes an integer-heavy computation,
while the second processor executes an I/O
benchmark. The two processors run concurrently,
and compete with each other for resources, such
as the shared system bus. The coprocessor
inspects the instruction stream committed by the
main processor, and checks for security flaws.
While our benchmarks are small (hundreds of
thousands of cycles), our methodology can be
easily extrapolated to more complex workloads.

A. Search Space Exploration
We first performed an exhaustive search of the

parameter space for 3 independent parameters:
the clock frequencies of the second CPU, the
coprocessor, and DRAM. (The clock frequency of
the main CPU is constant; frequencies are
changed in 5MHz increments). We constrain
system performance to be above a
minimum threshold; an execution longer

1
 C is the capacitance, V is the voltage and f the frequency

of each system component i.

Figure 2: Evaluation system with six clock domains.

than the threshold is unacceptable and not shown
in the surfaces in Figure 4. As a result, the search
space has an irregular shape. Figure 4 shows the
Power-Delay (PD) values for all possible legal
combinations, where a high PD is bad, and a low
PD is good.

We then performed a directed search on the

configuration space, using information provided by
the GCP. Figure 3 provides a generic algorithm for
a GCP directed search. The search proceeds by
choosing one of two kinds of moves: (1) increase
system performance by speeding up a module on
the critical path, or (2) decrease system power by
slowing down a module outside of the critical path.
More sophisticated algorithms can be formulated
and used in this framework. It is important to note
that the GCP merely provides information on the
modules that bottleneck system-wide progress,
and potential optimization points. The GCP
information is used to perform a “swap” on IP
blocks: the IP block on the critical path is made
faster at the expense of the other block (off the
critical path). This swap guarantees that the GCP-
directed search progresses monotonically, allowing
for quicker convergence. Using the search
algorithm in Figure 3 gives us a local minimum as
opposed to the global minimum (the optimal
solution). The GCP can also be coupled with more
sophisticated search techniques such as simulated
annealing, to speed up convergence to optimal
solutions.

Note that while we only modify clock
frequencies of components in these experiments,
we could choose other moves that impact the cost
function, such as capacitance, voltage, even
arbiter priorities and cache sizes.

Computing these results required more than
160 simulations when exploring just three degrees
of freedom. The GCP-based directed search uses
far fewer simulation points in the search space
while improving the optimization criterion, PD, as
delineated by the thick arrows for 4 searches
(starting from random initial configurations) in
Figure 4, which take at most 5 steps. This directed
search is completely automatic, and does not
require any human intervention.

By making all 6 IP blocks in our system
configurable, the size of the search space grows
from 160 to 19200, making exhaustive search
infeasible. For such a large space, we cannot
exhaustively compute the [near] optimal
configuration. This issue is even more acute for
real systems, which can have tens or hundreds of
degrees of freedom. In Figure 5, we show the
results of the directed search for the large search
space, which converges to a minimal PD
configuration in just 11 steps. This is the longest
run out of the multiple simulations that we
performed.

Figure 5: Directed search in a 6-dimensional space.

Figure 4: Complete search space for 4-module system when
varying the frequency of the 2

nd
 CPU, coprocessor and

DRAM. The four surfaces correspond to the four legal values
of the 2

nd
 processor’s frequency. The colored arrows show

the directed search followed by using the GCP from 4 initial
random points.

GCP directed Search Algorithm
���������������	
	�	�����

	�����	�
������������
���

�	

���
�� ��� ������� ����� ����� �����
�
��	�
� 	��

���	�
	����

�����������
�����	�����	�
��
����������

����� 	�� �
� ���
����
��� �
� ������� 	�� ������ ���
�

����	�������
����
������ ������������������������!

�����
��"�	
��#$���
����	���	��
�	
��������
������

������� ��	�	%����

	�����	�
������������
�������

������
���� ��������� 	����
	
������	�� �
� ��� ������� ���

&����&��'���� ���� �
�� �
� ���� ��	�	���� �����
�������

�
�� ���� ������ �
�� (��	��� 	�� �

� ���� ��	�	���� ����)�

���������	�������*����	
����������+
�
��	�
��

��������#����������,�(������)��

Figure 3: Algorithm of the GCP-directed search.

B. Abstracting module implementations
We treated the CPU as a black box and

compared the resulting GCP with that obtained
with knowledge of the internal CPU structure. We
found that both analyses ranked the same edges in
the histogram to be critical. There was a slight
difference of 3% in the number of transitions seen
between the abstracted and non-abstracted case.
On further investigation, we found that this
difference was due to the non-blocking stores
issued by the main processor that hit in its data
cache. In the non-abstracted view, these stores are
not considered critical because the processor does
not stall. This shows promise for abstracting low-
level detail in IP blocks resulting in less logging
overhead and closed-source IP block compatibility.

VI. Conclusions
We demonstrated the use of GCP analysis for

diagnosing and optimizing performance problems
in GALS MPSoC systems where the designer may
not understand complex system interactions. Our
model MPSoC consisted of GALS components.
We showed that a directed search algorithm based
on the GCP provides optimal configurations in a
few steps (11 out of 19200 possibilities). We
successfully applied this technique to SoC designs
with 3-6 degrees of freedom.

Our initial implementation required knowledge
of the system in order to instrument the source
code. We instrumented less than 0.2% of the
module signals and added 1% more lines of
instrumentation code, introducing negligible
overhead to the simulation time. By abstracting
RTL modules, the absolute difference of the GCP
analysis when compared to complete GCP
obtained using the low-level HDL analysis was only
3%. Additionally, the overall GCP ranking of
module criticality was unchanged.

In future work, we would like to automatically
infer control signals from the HDL, generate the
resulting instrumentation code, and generate
accurate abstract SoC models, which will speed up
simulation for real, commercial MPSoCs or SoCs.
Finally, we would like to apply the GCP to larger
SoC and MPSoC systems, and explore hardware-
based collection techniques using FPGAs.

REFERENCES

[1] P. Barford and M. Crovella, “Critical Path
Analysis of TCP transactions”, Proc. IEEE
Transactions on Networking, 2001

[2] E. Borch, et al., “Loose loops sink Chips”,
Proc. HPCA, Feb 2002

[3] S. M. Burns. Performance Analysis and
Optimization of Asynchronous Circuits. PhD
thesis, California Institute of Technology, 1991

[4] J. D. Davis, J. Laudon, and K. Olukotun,
“Maximizing CMP Throughput with Mediocre
Cores”, Proc. PACT, Sep 2005

[5] T. Eeckelaert, et al., “Efficient Multiobjective
Synthesis of Analog Circuits using Hierarchical
Pareto-Optimal Performance”, Proc. DATE,
2005

[6] B. Fields, et al., “Focusing processor policies
via critical-path prediction”, Proc. ISCA, Jun
2001

[7] F. Ghenassia (ed), “Transaction-Level
Modeling with SystemC: TLM Concepts and
Applications for Embedded Systems”,
Springer, 2005

[8] H. Kannan, M. Dalton, and C. Kozyrakis,
“Decoupling Dynamic Information Flow
Tracking with a Dedicated Coprocessor”, Proc
DSN, Jun 2009

[9] H. Kannan et al., “Tuning SoCs using the
Dynamic Critical Path”, Microsoft Research
Tech. Report, MSR-TR-2009-44, Apr 2009

[10] LEON3 SPARC Processor.
http://www.gaisler.com.

[11] R. Nagarajan, et al., “Critical Path Analysis of
the TRIPS Architecture”, Proc. ISPASS, Apr
2006

[12] A. Saidi, et al., “Full-system critical path
analysis”, Proc. ISPASS, Apr 2008

[13] G. Venkataramani, et al., “Critical Path: A Tool
for System-Level Timing Analysis”, Proc. DAC,
Jun 2007

[14] G. Venkataramani and S. Goldstein,
“Operation chaining asynchronous pipelined
circuits”, Proc. ICCAD, Nov 2007

[15] A. Xie, et al, “Bounding average time
separations of events in stochastic timed Petri
nets with choice”, Proc. ASYNC, Apr 1999

