

Monitoring and Debugging DryadLINQ Applications with Daphne

Vilas Jagannath, Zuoning Yin, Mihai Budiu

vbangal2@illinois.edu, zyin2@uiuc.edu, mbudiu@microsoft.com

Abstract

Debugging and optimizing large-scale applications is

still more art than engineering discipline. This document

describes our experience in building a set of tools to help

DryadLINQ application developers understand and

debug their programs.

The core infrastructure for our tools is a portable

library which provides a DryadLINQ job object model

(i.e., a local representation of the distributed state of an

executed application). Layered on the job object model

we have built a variety of interactive and batch tools for:

performance data collection and analysis, distributed

state visualization, failure diagnostics, debugging, and

profiling.

1. Introduction

The emergence of high-level programming frameworks

for large-scale distributed systems, such as Map-Reduce

[1] Hadoop [2], and DryadLINQ [4] has led to an

explosion of interest in the development of very large

scale batch-processing applications. The success of these

frameworks is due to the fact that they hide the

complexity of the underlying distributed systems from

the programmer by providing a simple sequential

programming language interface and a single-system

abstraction. (In this document we will use the term “job”

for such distributed computations.)

Unfortunately the abstraction provided by these

frameworks is quite fragile and breaks down when bugs

are encountered (either performance or correctness

bugs). To diagnose application problems programmers

have to understand the structure of the distributed job and

the mapping between the original program source and the

distributed code running on the cluster. The diagnoses

commonly involve “combing” through log files spread

among the cluster machines where execution was

performed. The scale of the systems involved magnifies

the difficulties, since a single computation can generate

millions of distributed processes and billions of files.

When this infrastructure is exposed to the programmers

the daunting complexity of the underlying distributed

system becomes visible, negating most of the benefits of

the simple programming language.

The end goal of this research project is to simplify the

development experience. We attempted to address these

issues by building tools for monitoring, profiling and

debugging distributed jobs. We started by building

several batch and interactive tools. During this process

we have discovered much commonality in their structure,

so we have factored a common API, which we then used

to rewrite the tools. We regard this API as the main

technical contribution of the current paper.

This API provides a structured view of the distributed

information describing a job. We call this view a job

object model or JOM (similar to the document object

model DOM provided by web browsers to JavaScript

engines). Unlike the DOM, the JOM provides a read-

only API for clients. It aggregates information generated

by a large number of sources from the cluster runtime,

the job submission system, the job control process and

from processes executed on behalf of jobs on the cluster

machines. Data sources include: the job plan, cluster

runtime logs, application logs, performance counters, job

inputs and outputs, and even the results of querying

various cluster services. Since we are targeting large-

scale computation platforms, the execution of a single

job can lead to the generation of a huge amount of state

information (e.g., terabytes of logs). For this reason parts

of the JOM are computed lazily, e.g., in response to user

actions in a browser GUI. This enables us to build

interactive tools with good response time even when

browsing large data sets.

Having built a JOM one can then more easily build a

set of job understanding tools; we dedicate most of this

paper to describing the tools which we have created as

companions to the DryadLINQ system. In particular, we

discuss tools for: browsing the job state to monitor job

execution, automatic job failure diagnosis, interactive

debugging, scripting job data analyses and performance

data collection and analysis. Most of these tools are

integrated with Daphne, an interactive job browsing

application. Artemis, the performance analysis toolkit [8]

is now integrated with Daphne. In the Greek mythology

Daphne is the tree nymph of the laurel tree. The tree

nymphs are also called Dryads. Artemis is their closest

friend.

Whereas Daphne is designed to analyze DryadLINQ

programs, we believe that our approach is quite general,

and could be employed for other popular classes of

distributed jobs, such as Map-Reduce and Hadoop,

Sawzall [6], Pig [3] or FlumeJava [7].

2. Background

To better understand the flow of control and the

distributed job state we start by describing our cluster

infrastructure , shown in Figure 1, including our compiler

(DryadLINQ) and runtime (Dryad) [5].

mailto:vbangal2@illinois.edu
mailto:zyin2@uiuc.edu
mailto:mbudiu@microsoft.com

2.1 DryadLINQ

DryadLINQ is a compiler and runtime which allows

users to execute .Net programs on large computer

clusters. DryadLINQ compiles LINQ [9] constructs into

distributed execution plans, and uses the Dryad

distributed runtime to reliably execute these plans on a

distributed computer cluster.

Figure 1: The DryadLINQ cluster software stack

LINQ is essentially a language of operators that

compute on collections of values. Chains of LINQ

operators can be applied to an input collection, forming

LINQ queries. Each LINQ query is translated by

DryadLINQ into a Dryad job (as described in the next

section), which is then executed by the Dryad runtime on

the cluster.

While conceptually the user writes a single program

that operates on a set of collections and runs on a typical

workstation, at runtime the program is executed using

multiple machines, and the collections are partitioned,

stored and manipulated by multiple machines

concurrently, providing high throughput computation on

very large data.

2.2 Dryad

A Dryad job (Figure 2) is a directed acyclic graph: the

nodes of the graph (also called vertices) are processes

that run independently, often on different machines. The

edges of the graph are communication channels that

move data between the vertices. The vertices are usually

organized in stages: all vertices in a stage perform the

same computation on different partitions of a large

dataset.

Dryad assumes that vertices are deterministic,

functional and idempotent: i.e., their behavior only

depends on the data in the input channels, and re-

executing a vertex several times will produce a

functionally equivalent output. Dryad takes advantage of

these properties to provide fault-tolerant execution

through re-execution and speculative execution of

vertices. Dryad supports multiple channel types; most

frequently the Dryad channels are implemented as

persistent files, offering automatic checkpoint and restart

at vertex granularity.

Figure 2: Dryad job structure

2.3 DryadLINQ Operation

To use DryadLINQ the user writes and executes a

LINQ program on the local client workstation. The

DryadLINQ system transparently generates executable

code and an execution plan for Dryad and invokes the

execution of the Dryad program on a cluster. Figure 3

shows the steps of this process in detail:

1. The application executes a LINQ query on the

local client.

2. The DryadLINQ provider compiles the query into a

Dryad execution plan.

3. The DryadLINQ system uses a job submission

library to contact the cluster runtime and to initiate the

job execution.

4. The job submission library sends the job (including

binaries, file resources, job plan, etc.) for execution to a

cluster-level scheduler, which is usually accessible

through a firewall.

5. The cluster scheduler allocates resources for the

job and initiates the job execution by contacting a PN

service to start the job manager. The PN is a service

(part of the “cluster services” box in Figure 1) that runs

on all machines in the cluster and provides remote

execution and monitoring capabilities.

6. The PN creates a sandbox and starts the execution

of the Dryad job manager process. The job manager is

the central control point which oversees the execution

of the job.

7. The Dryad job manager reads the job plan and

starts creating, dispatching and monitoring the vertex

processes. The job manager invokes the PN services

from the other cluster machines to execute the vertices

remotely.

Each vertex is executed by a PN in a sandbox on the

local machine. Vertices use the local storage in the

sandbox to write logging information. Each vertex

writes the temporary and output files in the local

sandbox, and may read the input files from a remote

sandbox.

On job completion the control signaling goes in the

reverse direction (not shown in the figure): the cluster

scheduler notices the completion of the job manager

process and returns a result to the job submission

library on the client workstation, which returns to

DryadLINQ, which returns to the application.

Figure 3: DryadLINQ detailed operation: red arrows

denote control, yellow arrows denote data movement.

Figure 3 is quite complex. Normally the DryadLINQ

developers are shielded from this complexity; however,

while debugging performance or correctness problems

the developers are exposed to most of the details of this

architecture. To make matters worse, the tools available

to inspect the distributed state depend on the cluster

platform that is being used (Cosmos, Windows Azure or

Windows HPC).

2. System Architecture

Figure 4: Software stack of the DryadLINQ job

manipulation tools.

Figure 4 shows the architecture of the software stack

for the job manipulation tools. Through the use of

abstraction layers (both at the level of cluster and JOM)

this stack is portable across several cluster system

architectures (we have not yet ported our tools to the

Azure cluster services layer, but we support several

versions of HPC, Dryad, and DryadLINQ). Most of these

tools run on the client machine (but they occasionally

spawn DryadLINQ computations when they need to

collect large amounts of data from the cluster).

At the bottom is a cluster-abstraction layer which hides

the specifics of each cluster platform. It provides a

narrow interface for enumerating jobs, cancelling them

and locating job placement on the cluster.

2.1. The Job Object Model

The JOM is a set of .Net classes which provides a view

of a running job: it contains representations for the job

and its vertices, and it provides APIs to discover the state

of the job vertices, their location and their associated

logs, inputs, and outputs. It also represents other

important job-related entities, such as the input and

output files, the static job plan, the job schedule. The

main parts of the JOM are a job object and a list of vertex

objects. The top-left pane in Figure 6 shows a view of the

job object, while the top-right pane shows a view of one

vertex object.

The JOM is built from a variety of heterogeneous

sources of information; by hiding the heterogeneity and

the platform-specific details under a generic API the

JOM insulates the tool developers from details of the

actual system which change on different cluster runtimes

and with new software versions. For example, new

versions of DryadLINQ and Dryad have changed the

format of the log messages and plan representation,

however, most of the tools continued to operate

unchanged.

The bulk of the state used to build the JOM is obtained

from the job manager logs and the static job plan. The

Dryad job manager process emits one log line for each

important state-machine transition of a job vertex (e.g.,

vertex is ready, started, running, cancelled, failed, or

completed).

In building the JOM we had to trade-off between

comprehensiveness and portability. We have erred

towards portability: to provide cross-platform

functionality, the JOM uses a minimal amount of

platform-specific data. For instance, it does not use

information from the PN service or the cluster scheduler.

The nature of such information differs substantially

between the various cluster software platforms. For

example, only on some platforms the PN service can

provide information about the resource consumption of

the vertex (memory, CPU, etc.).

3. Job Inspection Tools

Here we describe a set of tools that can be used for

inspecting the distributed job state.

3.1 Powershell API

Given the JOM it was straightforward to implement an

extension for Microsoft‟s PowerShell [10] that operates

on job objects. One can then use the full Powershell

syntax to query for failed jobs, long-running vertices,

logs, etc. This feature is very useful for power users and

cluster administrators. Here are some sample queries

written in PowerShell:

Find the failed jobs on cluster X:

get-cluster X | select-allJobs |
where-object { $_.Status –eq “Failed” }

Diagnose 3 failed jobs run by user Y:

get-cluster X | select-allJobs |
where-object { $_.User –match “Y” } |
select-object –last 3 | select-DryadJob |
Diagnose-Job

Find all the failed vertices in the last job executed:

(get-cluster X | select-AllJobs |
 sort-object Date | select-object -last 1 |
 select-DryadJob).Vertices |
 where-object { $_.State -eq "Failed" }

3.2 Interactive Job Visualization

On top of the JOM we have also built a set of

interactive enable users to explore the distributed job

state.

3.2.1 Cluster browser

The cluster browser is shown in Figure 5. Besides

filtering and sorting, the cluster browser provides a few

other elementary operations: job cancellation, starting the

job browser (described below), collecting profile

information (Section 3.2.3), and diagnosis of failures

(described in Section 4). The cluster browser also offers

a set of “administrative” operations, including the

starting and stopping of performance counters on the

cluster.

Figure 5: screenshot of the cluster browser

3.2.3. Daphne, the Job Browser

Figure 6 shows a screen-shot of the Daphne job

browser, the most complex and useful tool in the set. The

job browser GUI is divided into three vertical panes,

representing the natural job structure hierarchy, from left

to right.

Figure 6: Screenshot of Daphne, the job browser.

Job state Stage state

Vertex state

The job state pane (left) shows global job information.

At the bottom-left is a depiction the job plan, each oval

representing a stage. It is worth pointing that there is no

simple one-to-one correspondence between the static job

plan and the vertices of the job executed, since Dryad can

alter the job plan dynamically. Dryad can execute each

vertex many times, due either to failures or speculative

execution. Also, Dryad can dynamically remove and

insert vertices or stages while a job is executing. For this

reason the browser can display either static or dynamic

views of the job. The user can select one of the job stages

by clicking on the job plan. The oval circled with a bold

line is the selected stage.

The selected stage (Apply_44 in this figure) is

displayed in the central pane. The middle of the central

pane displays the LINQ code executed by the selected

stage (a DryadApply statement). The stage information

includes the list of all vertices in the stage (bottom

middle); 10 vertices are shown in the figure. The user can

click on a vertex to select it (in the figure vertex

Apply_44[4] is selected). Information specific to the

selected vertex is shown in the right (vertex) pane.

The rightmost pane allows the user to further drill-

down into the selected vertex (Apply_44[4]) state. The

user can visualize vertex inputs, outputs, work directory,

logs or standard output. Our current implementation

discovers this information by browsing remotely the files

in the vertex sandbox.

3.2.3 Performance data collection

To diagnose job-level performance problems we have

built support to manipulate of performance counters

collection on the cluster during job execution. Our tools

include a GUI to visualize the performance data and a set

of analyses for discovering performance anomalies using

statistical methods. These tools have been described in a

previous publication [8], but have now been refactored to

use the JOM.

Each machine in the cluster collects measurements for

the same set of counters and writes the measurements in

a segmented log file persisted on the local disk. The user

can initiate the collection of performance counters

corresponding to a completed job from the cluster

browser. Due to the large volume of data that needs to be

collected (requiring scanning of potentially thousands of

logs from each machine), the data collection is

implemented as a DryadLINQ job. Normally the counter

collection is a post-mortem activity. The collection job

performs a large distributed join by selecting from the

perfmon logs on each machine only the measurements

corresponding to vertices that ran on that machine.

4. Failure Diagnosis

One of the hardest tasks for a novice DryadLINQ

application programmer is to understand the reasons for

failing jobs. Diagnosing is difficult in part due to the

complex chain of invocations shown in Figure 3. The

various software layers involved were not designed to

relay structured job failure information from the cluster

to the client application (i.e., there is no direct

communication channel from the Dryad job manager

process back to the client application, which crosses the

firewall in the reverse direction and tunnels through the

cluster scheduler and job submission libraries).

Additional complexity stems from the fact that jobs can

fail in many different ways, so developers have to know

where to look for the failures. For example, application-

level errors may result in vertices crashing or

deadlocking. The vertex runtime attempts to trap all

unhandled exceptions and to save the managed stack

trace at the exception point, but some vertex errors do not

generate stack traces (in particular, stack overflow

exceptions). Obscure errors can be caused by usage of

improper library versions (such as using mismatched

versions of .Net or Dryad libraries). Data corruption can

affect many seemingly unrelated vertices (e.g.,

corruption on a disk storing inputs for many different

vertices). Moreover, some errors are benign, and can be

overcome by the automatic fault-tolerance capabilities of

Dryad. When multiple distinct errors occur in a single

job execution they are difficult to disentangle.

To help users navigate the complex error conditions we

have built an automatic diagnosis tool. The diagnostic

uses a decision tree to pinpoint the root cause of a job

failure. The decision tree is quite complex, and

aggregates many sources of information starting from the

JOM: the job manager standard output, the job manager

error logs, vertex error logs, the vertex stack traces, and

statistical analyses for correlated failures across

machines. The job failure decision tree is composed of

two sub-trees: the root tree performs job-level diagnosis

(e.g., incorrect job submissions, cluster-related problems,

etc.). The top-level tree invokes a vertex-level decision

tree if it decides that job failure is caused by a specific

vertex which fails deterministically.

The decision tree is the least portable of our tools.

While some of code is generic, many parts had to be

specialized for failures specific to the cluster runtime

used or a specific software version employed (different

software versions fail in very different ways).

The decision tree approach is naturally incomplete and

can fail provide a diagnostic for conditions which are not

encoded in the tree. The decision tree attempts to locate

the root cause of a failure, which is often quite different

from the low-level error code generated the runtime

which relays the error.

The job and cluster browsers allow the developers to

invoke the decision trees (both for jobs and vertices) with

a single mouse click. The decision tree can be used also

on running jobs (which haven‟t yet failed) if the jobs

have a significant number of vertex failures (which may

indicate impending job failure or infrastructure/hardware

malfunctions).

The job diagnosis should be integrated into the job

submission software layer from Figure 2, to

automatically provide the developers with high-level

error messages about jobs that fail. We have not yet done

this integration.

We have also built a cluster monitoring service that

builds a catalog of all job failures encountered. This tool

has helped us improve the coverage of the decision tree,

by pointing out incomplete diagnoses. The service

automatically emails to the users a diagnosis of their

failed jobs; it also emails the DryadLINQ developers

every time a failure seems to be due to a bug in

DryadLINQ, and it emails the cluster operators when

failures seem to be due to hardware-level malfunctions.

This service has helped DryadLINQ developers prioritize

fixing bugs which happen frequently.

5. Debugging

When a job crashes the application developer needs to

debug it. The simplest case is when a vertex fails while

executing the managed code written by the user; then the

vertex generates a stack trace relayed back to the job

manager. However, even in this simple case the stack

trace contains references to the code generated by

DryadLINQ, which can be quite different from the

original user LINQ query.

Often the vertex stack trace is not enough to pinpoint

the root cause of a failure. For this reason we offer

several debugging scenarios.

5.1 Vertex debugging on the client machine

This scenario takes advantage of the fact that Dryad job

vertices are meant to be re-executed in case of failure.

The Dryad runtime generates several scripts to support

manual re-execution of vertices in the correct

environment.

We have integrated this debugging scenario within the

Daphne job browser. The user can select a vertex by

browsing the job and then initiate local debugging using

a mouse click. The result of this action is a process

running under the control of a local debugger running the

vertex code on the developer machine.

Debugging is implemented by creating a temporary

“sandbox” on the local machine and copying the content

of the PN‟s vertex sandbox from the cluster. The

debugging tool also locates relevant pdb files (containing

debugging information and symbol mappings) and the

cluster configuration files that are needed by the vertex

runtime for proper execution. These files are obtained

from the client machine.

5.2 Vertex profiling on the local machine

To diagnose vertex-level performance problems we

offer a profiling scenario. Profiling is also integrated in

the job browser. Profiling proceeds similarly to

debugging, but instead of attaching a debugger to the

local vertex, it uses the Visual Studio managed code

profiling facilities to instrument and execute a vertex and

generate a traditional Visual Studio managed code

profiling report.

5.3 Interactive debugging on the cluster

DryadLINQ attempts to provide a single-machine-like

environment for distributed applications. Ideally,

debugging DryadLINQ applications should also provide

the illusion of executing the debugger on a single

machine. The user should be able to set conditional

breakpoints, inspect the stack and heap, and start and

stop execution.

The scenario we present in this section attempts to

emulate an interactive debugging session while the

application is executing at scale, on the cluster.

Note that there are some fundamental obstacles to

debugging interactively large-scale applications using a

traditional debugging metaphor. For example, a Dryad

job stage can encompass thousands of processes, which

could all hit the same breakpoint. The user interface of

the debugger does not scale to handle thousands of

simultaneous processes. Also, each vertex has a separate

address space, with different values for the variables. As

such, the value of a conditional breakpoint expression

can be different in each vertex.

In the interactive debugging scenario the users run the

client DryadLINQ application in a Visual Studio

debugging session on the local client machine. The user

can create and insert conditional breakpoints. The

application runs and spawns the Dryad computation on

the cluster. When a Dryad vertex reaches code guarded

by a conditional breakpoint a new “process” window

appears in the debugger, as shown in Figure 8.

The experience of debugging the application in this

way is similar to debugging a traditional multi-threaded

application, except that each vertex runs in a separate

address space on a separate machine. The debugging is

performed by using the local visual studio debugger to

perform remote debugging on vertex processes on the

cluster.

We had to make several changes to the DryadLINQ

compiler and runtime to enable this functionality:

1. The Visual studio remote debugging stub executable

(msvmon.exe) is shipped as a resource of the Dryad job

(which makes it available to all vertices in their

sandbox).

2. At start-up each vertex launches a remote debugger

stub process.

Figure 7: Screenshot of Visual Studio showing interactive debugging on the cluster.

Each vertex is shown as a separate process that is being debugged.

3. The vertex next sends a “notification” to the

application running on the client machine, signaling its

readiness to be debugged. Since the software stack

(shown in Figure 2) includes no such notification

channel between the vertices and the client application,

we have emulated the “notification” mechanism

entirely on the client-side machine, by using the

DryadLINQ JOM. We have integrated the JOM with

the job submission library. The JOM polls the cluster

to update the job state periodically and sends

notifications to client application when interesting

vertex state events have been discovered (e.g., the

debugged vertex has been started).

4. To give fine-grained control to the user on which

vertices are to be debugged, we augmented the

DryadLINQ API to expose to the user application a

static “vertex_to_debug” delegate. The delegate is

evaluated by each vertex on its local state; when the

delegate returns „true‟ the vertex is debugged remotely.

With the help of this delegate users can restrict the

range of vertices to be debugged based on the vertex

runtime environment (e.g., debug only the first 3

vertices of a stage).

5. Each debugged vertex enters a loop waiting for a

remote debugger to be attached.

6. When it receives a notification that a vertex is

waiting for a debugger, the client-side DryadLINQ

application attaches a remote debugger to the vertex.

Note that attaching a debugger requires suitable

permissions to cross the cluster firewall and to debug

processes on the cluster.

7. The DryadLINQ application running on the client

uses COM automation to instruct the client-side

debugger to attach to the remote process.

5. Related work

In recent years, there has been a large body of

research on high-level programming frameworks for

large-scale distributed systems like DryadLINQ [4],

Hadoop [2], Pig [3] and Map Reduce [1]. Debugging

remains a big challenge for systems built using these

frameworks [12], [13]. Many systems, including Pig

and DryadLINQ offer a local debugging mode which

can be used to execute the application on the client

workstation on a small dataset. This mode is useful for

finding some types of application bugs, but it

obviously does not help with errors caused by large

scale data (e.g., an integer overflow when counting the

elements in a large set), or errors due to the cluster

environment.

To debug failures on the cluster cases users resort to

inspecting logs on the cluster machines manually.

Cloudera tools [14] provide a rich set of tools, some of

which overlap in functionality with our cluster and job

browser. Chukwa [15] is a log collection framework

that can be used to monitor Hadoop clusters, which

includes tools for resource visualization; it is related to

the Artemis component of our toolkit. Jiaqi Tan et al

have done extensive work on diagnosing problems for

Hadoop computations [17], [18], [16] using a variety

of tools, including visualization, and statistical

methods; these are also related to the Artemis

performance analysis component of Daphne.

Windows Azure [19] offers a debugging scenario

using Visual Studio which is related to our client

vertex debugging scenario.

The main contribution of our work is the system

architecture for building a rich suite of job monitoring

tools, based on a job object model. We also offer

several powerful interactive and debugging scenarios,

including live debugging of vertices on a cluster

initiated from a debugger running on the client

workstation. Our solution for this problem is inspired

by the Visual Studio debugging support for MPI

applications [11].

6. Summary

For the foreseeable future programmers will need to

be able to understand details of the execution of their

large-scale applications. This document describes our

attempt to address this problem by building a set of

abstractions and tools for understanding distributed

computation state: the key abstraction is a DryadLINQ

job object model; using the model it is relatively easy

to build a rich set of portable tools for distributed job

state visualization, performance collection and

profiling, failure diagnosis, and debugging. These tools

have been very well received by the community of

DryadLINQ system and application developers; in

particular, these tools are greatly helping new users to

overcome the steep learning curve of programming

large clusters. Even power users and system

developers are finding these tools to be very

convenient when they deal with a port of DryadLINQ

to a new unfamiliar cluster platform,

7. References

[1] Jeffrey Dean and Sanjay Ghemawat,

"MapReduce: Simplified Data Processing on

Large Clusters," in OSDI, 2004.

[2] Apache Software Foundation. (2007)

Hadoop. [Online]. http://hadoop.apache.org/

[3] Christopher Olston, Benjamin Reed, Utkarsh

Srivastava, Ravi Kumar, and Andrew Tomkins,

"Pig latin: a not-so-foreign language for data

processing," in SIGMOD, 2008.

[4] Yuan Yu et al., "DryadLINQ: A System for

General-Purpose Distributed Data-Parallel

Computing Using a High-Level Language," in

OSDI, 2008.

[5] Michael Isard, Mihai Budiu, Yuan Yu,

Andrew Birrell, and Dennis Fetterly, "Dryad:

Distributed data-parallel programs from

sequentialbuilding blocks," in EuroSys, 2007.

[6] Rob Pike, Sean Dorward, Robert Griesemer,

and Sean Quinlan, "Interpreting the Data:

Parallel Analysis with Sawzall," Scientific

Programming, vol. 13, no. 4, pp. 277-298,

2005.

[7] Craig Chambers et al., "FlumeJava: Easy,

Efficient Data-Parallel Pipelines," in ACM

SIGPLAN Conference on Programming

Language Design and Implementation (PLDI),

2010.

[8] Gabriela Cretu-Ciocirlie, Mihai Budiu, and

Moises Goldszmidt, "Hunting for problems

with Artemis," in USENIX Workshop on the

Analysis of System Logs (WASL), San Diego,

CA, 2008.

[9] Erik Meijer, Brian Beckman, and Gavin M.

Bierman, "LINQ: Reconciling object, relations

and XML in the.NET framework," in

SIGMOD, 2006.

[10] (2009, May) Windows PowerShell Getting

Started Guide. [Online].

http://msdn.microsoft.com/en-

us/library/aa973757(VS.85).aspx

[11] Daniel Moth. (2009, October) VS2010 MPI

Cluster Debugger launch integration. [Online].

http://channel9.msdn.com/posts/DanielMoth/V

S2010-MPI-Cluster-Debugger-launch-

integration/.

[12] Michael Armbrust et al., "A view of cloud

computing," Communications of the ACM, vol.

53, no. 4, pp. 50--58, April 2010.

[13] Theophilus Benson, Sambit Sahu, Aditya

Akella, and Anees Shaikh, "A First Look at

Problems in the Cloud," in HotCloud, 2010.

[14] Cloudera Inc. (2010) Cloudera Management

Tools. [Online].

http://www.cloudera.com/products-

services/tools/

[15] The Apache Software Foundation. (2008)

Chukwa. [Online].

http://incubator.apache.org/chukwa/

[16] Jiaqi Tan, Xinghao Pan, Soila Kavulya,

Rajeev Gandhi, and Priya Narasimhan, "Mochi:

Visual Log-Analysis Based Tools for

Debugging Hadoop," in HotCloud, 2009.

[17] Jiaqi Tan, Soila Kavulya, Rajeev Gandhi, and

Priya Narasimhan, "Visual, Log-based Causal

Tracing for Performance Debugging of

MapReduce Systems," in ICDCS, 2010.

[18] Jiaqi Tan et al., "Kahuna: Problem diagnosis

for Mapreduce-based cloud computing

environments," in NOMS, 2010.

http://hadoop.apache.org/
http://msdn.microsoft.com/en-us/library/aa973757(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa973757(VS.85).aspx
http://channel9.msdn.com/posts/DanielMoth/VS2010-MPI-Cluster-Debugger-launch-integration/
http://channel9.msdn.com/posts/DanielMoth/VS2010-MPI-Cluster-Debugger-launch-integration/
http://channel9.msdn.com/posts/DanielMoth/VS2010-MPI-Cluster-Debugger-launch-integration/
http://www.cloudera.com/products-services/tools/
http://www.cloudera.com/products-services/tools/
http://incubator.apache.org/chukwa/

