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Abstract 

Debugging and optimizing large-scale applications is 

still more art than engineering discipline. This document 

describes our experience in building a set of tools to help 

DryadLINQ application developers understand and 

debug their programs.  

The core infrastructure for our tools is a portable 

library which provides a DryadLINQ job object model 

(i.e., a local representation of the distributed state of an 

executed application). Layered on the job object model 

we have built a variety of interactive and batch tools for: 

performance data collection and analysis, distributed 

state visualization, failure diagnostics, debugging, and 

profiling.  

1. Introduction 

The emergence of high-level programming frameworks 

for large-scale distributed systems, such as Map-Reduce 

[1] Hadoop [2], and DryadLINQ [4] has led to an 

explosion of interest in the development of very large 

scale batch-processing applications. The success of these 

frameworks is due to the fact that they hide the 

complexity of the underlying distributed systems from 

the programmer by providing a simple sequential 

programming language interface and a single-system 

abstraction. (In this document we will use the term “job” 

for such distributed computations.) 

Unfortunately the abstraction provided by these 

frameworks is quite fragile and breaks down when bugs 

are encountered (either performance or correctness 

bugs). To diagnose application problems programmers 

have to understand the structure of the distributed job and 

the mapping between the original program source and the 

distributed code running on the cluster. The diagnoses 

commonly involve “combing” through log files spread 

among the cluster machines where execution was 

performed. The scale of the systems involved magnifies 

the difficulties, since a single computation can generate 

millions of distributed processes and billions of files. 

When this infrastructure is exposed to the programmers 

the daunting complexity of the underlying distributed 

system becomes visible, negating most of the benefits of 

the simple programming language. 

The end goal of this research project is to simplify the 

development experience. We attempted to address these 

issues by building tools for monitoring, profiling and 

debugging distributed jobs. We started by building 

several batch and interactive tools. During this process 

we have discovered much commonality in their structure, 

so we have factored a common API, which we then used 

to rewrite the tools. We regard this API as the main 

technical contribution of the current paper. 

This API provides a structured view of the distributed 

information describing a job. We call this view a job 

object model or JOM (similar to the document object 

model DOM provided by web browsers to JavaScript 

engines). Unlike the DOM, the JOM provides a read-

only API for clients. It aggregates information generated 

by a large number of sources from the cluster runtime, 

the job submission system, the job control process and 

from processes executed on behalf of jobs on the cluster 

machines. Data sources include: the job plan, cluster 

runtime logs, application logs, performance counters, job 

inputs and outputs, and even the results of querying 

various cluster services. Since we are targeting large-

scale computation platforms, the execution of a single 

job can lead to the generation of a huge amount of state 

information (e.g., terabytes of logs). For this reason parts 

of the JOM are computed lazily, e.g., in response to user 

actions in a browser GUI. This enables us to build 

interactive tools with good response time even when 

browsing large data sets. 

Having built a JOM one can then more easily build a 

set of job understanding tools; we dedicate most of this 

paper to describing the tools which we have created as 

companions to the DryadLINQ system. In particular, we 

discuss tools for: browsing the job state to monitor job 

execution, automatic job failure diagnosis, interactive 

debugging, scripting job data analyses and performance 

data collection and analysis. Most of these tools are 

integrated with Daphne, an interactive job browsing 

application. Artemis, the performance analysis toolkit [8] 

is now integrated with Daphne. In the Greek mythology 

Daphne is the tree nymph of the laurel tree. The tree 

nymphs are also called Dryads. Artemis is their closest 

friend. 

Whereas Daphne is designed to analyze DryadLINQ 

programs, we believe that our approach is quite general, 

and could be employed for other popular classes of 

distributed jobs, such as Map-Reduce and Hadoop, 

Sawzall [6], Pig [3] or FlumeJava [7]. 

2. Background 

To better understand the flow of control and the 

distributed job state we start by describing our cluster 

infrastructure , shown in Figure 1, including our compiler 

(DryadLINQ) and runtime (Dryad) [5].  
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2.1 DryadLINQ 

DryadLINQ is a compiler and runtime which allows 

users to execute .Net programs on large computer 

clusters. DryadLINQ compiles LINQ [9] constructs into 

distributed execution plans, and uses the Dryad 

distributed runtime to reliably execute these plans on a 

distributed computer cluster. 

 

 
Figure 1: The DryadLINQ cluster software stack 

LINQ is essentially a language of operators that 

compute on collections of values. Chains of LINQ 

operators can be applied to an input collection, forming 

LINQ queries. Each LINQ query is translated by 

DryadLINQ into a Dryad job (as described in the next 

section), which is then executed by the Dryad runtime on 

the cluster.  

While conceptually the user writes a single program 

that operates on a set of collections and runs on a typical 

workstation, at runtime the program is executed using 

multiple machines, and the collections are partitioned, 

stored and manipulated by multiple machines 

concurrently, providing high throughput computation on 

very large data. 

2.2 Dryad 

A Dryad job (Figure 2) is a directed acyclic graph: the 

nodes of the graph (also called vertices) are processes 

that run independently, often on different machines. The 

edges of the graph are communication channels that 

move data between the vertices. The vertices are usually 

organized in stages: all vertices in a stage perform the 

same computation on different partitions of a large 

dataset. 

Dryad assumes that vertices are deterministic, 

functional and idempotent: i.e., their behavior only 

depends on the data in the input channels, and re-

executing a vertex several times will produce a 

functionally equivalent output. Dryad takes advantage of 

these properties to provide fault-tolerant execution 

through re-execution and speculative execution of 

vertices. Dryad supports multiple channel types; most 

frequently the Dryad channels are implemented as 

persistent files, offering automatic checkpoint and restart 

at vertex granularity. 

 
Figure 2: Dryad job structure 

2.3 DryadLINQ Operation 

To use DryadLINQ the user writes and executes a 

LINQ program on the local client workstation. The 

DryadLINQ system transparently generates executable 

code and an execution plan for Dryad and invokes the 

execution of the Dryad program on a cluster. Figure 3 

shows the steps of this process in detail: 

1. The application executes a LINQ query on the 

local client. 

2. The DryadLINQ provider compiles the query into a 

Dryad execution plan. 

3. The DryadLINQ system uses a job submission 

library to contact the cluster runtime and to initiate the 

job execution.  

4. The job submission library sends the job (including 

binaries, file resources, job plan, etc.) for execution to a 

cluster-level scheduler, which is usually accessible 

through a firewall. 

5. The cluster scheduler allocates resources for the 

job and initiates the job execution by contacting a PN 

service to start the job manager. The PN is a service 

(part of the “cluster services” box in Figure 1) that runs 

on all machines in the cluster and provides remote 

execution and monitoring capabilities. 

6. The PN creates a sandbox and starts the execution 

of the Dryad job manager process. The job manager is 

the central control point which oversees the execution 

of the job. 

7. The Dryad job manager reads the job plan and 

starts creating, dispatching and monitoring the vertex 

processes. The job manager invokes the PN services 

from the other cluster machines to execute the vertices 

remotely. 

Each vertex is executed by a PN in a sandbox on the 

local machine. Vertices use the local storage in the 

sandbox to write logging information. Each vertex 

writes the temporary and output files in the local 

sandbox, and may read the input files from a remote 

sandbox. 

On job completion the control signaling goes in the 

reverse direction (not shown in the figure): the cluster 

scheduler notices the completion of the job manager 

process and returns a result to the job submission 



 

 

 

library on the client workstation, which returns to 

DryadLINQ, which returns to the application. 

 

 
Figure 3: DryadLINQ detailed operation: red arrows 

denote control, yellow arrows denote data movement. 

Figure 3 is quite complex. Normally the DryadLINQ 

developers are shielded from this complexity; however, 

while debugging performance or correctness problems 

the developers are exposed to most of the details of this 

architecture. To make matters worse, the tools available 

to inspect the distributed state depend on the cluster 

platform that is being used (Cosmos, Windows Azure or 

Windows HPC). 

2. System Architecture 

 
Figure 4: Software stack of the DryadLINQ job 

manipulation tools. 

Figure 4 shows the architecture of the software stack 

for the job manipulation tools. Through the use of 

abstraction layers (both at the level of cluster and JOM) 

this stack is portable across several cluster system 

architectures (we have not yet ported our tools to the 

Azure cluster services layer, but we support several 

versions of HPC, Dryad, and DryadLINQ). Most of these 

tools run on the client machine (but they occasionally 

spawn DryadLINQ computations when they need to 

collect large amounts of data from the cluster). 

At the bottom is a cluster-abstraction layer which hides 

the specifics of each cluster platform. It provides a 

narrow interface for enumerating jobs, cancelling them 

and locating job placement on the cluster. 

2.1. The Job Object Model 

The JOM is a set of .Net classes which provides a view 

of a running job: it contains representations for the job 

and its vertices, and it provides APIs to discover the state 

of the job vertices, their location and their associated 

logs, inputs, and outputs. It also represents other 

important job-related entities, such as the input and 

output files, the static job plan, the job schedule. The 

main parts of the JOM are a job object and a list of vertex 

objects. The top-left pane in Figure 6 shows a view of the 

job object, while the top-right pane shows a view of one 

vertex object.  

The JOM is built from a variety of heterogeneous 

sources of information; by hiding the heterogeneity and 

the platform-specific details under a generic API the 

JOM insulates the tool developers from details of the 

actual system which change on different cluster runtimes 

and with new software versions. For example, new 

versions of DryadLINQ and Dryad have changed the 

format of the log messages and plan representation, 

however, most of the tools continued to operate 

unchanged. 

The bulk of the state used to build the JOM is obtained 

from the job manager logs and the static job plan. The 

Dryad job manager process emits one log line for each 

important state-machine transition of a job vertex (e.g., 

vertex is ready, started, running, cancelled, failed, or 

completed).  

In building the JOM we had to trade-off between 

comprehensiveness and portability. We have erred 

towards portability: to provide cross-platform 

functionality, the JOM uses a minimal amount of 

platform-specific data. For instance, it does not use 

information from the PN service or the cluster scheduler. 

The nature of such information differs substantially 

between the various cluster software platforms. For 

example, only on some platforms the PN service can 

provide information about the resource consumption of 

the vertex (memory, CPU, etc.). 

3. Job Inspection Tools 

Here we describe a set of tools that can be used for 

inspecting the distributed job state. 

3.1 Powershell API 

Given the JOM it was straightforward to implement an 

extension for Microsoft‟s PowerShell [10] that operates 

on job objects. One can then use the full Powershell 

syntax to query for failed jobs, long-running vertices, 

logs, etc. This feature is very useful for power users and 

cluster administrators. Here are some sample queries 

written in PowerShell: 

Find the failed jobs on cluster X: 
 
get-cluster X | select-allJobs |  
where-object { $_.Status –eq “Failed” } 



 

 

 

 

Diagnose 3 failed jobs run by user Y: 
 
get-cluster X | select-allJobs |  
where-object { $_.User –match “Y” } | 
select-object –last 3 | select-DryadJob | 
Diagnose-Job 

 

Find all the failed vertices in the last job executed: 
 
(get-cluster X | select-AllJobs  |  
 sort-object Date | select-object -last 1 | 
 select-DryadJob).Vertices | 
     where-object { $_.State -eq "Failed" } 

3.2 Interactive Job Visualization 

On top of the JOM we have also built a set of 

interactive enable users to explore the distributed job 

state.  

3.2.1 Cluster browser 

The cluster browser is shown in Figure 5. Besides 

filtering and sorting, the cluster browser provides a few 

other elementary operations: job cancellation, starting the 

job browser (described below), collecting profile 

information (Section 3.2.3), and diagnosis of failures 

(described in Section 4). The cluster browser also offers 

a set of “administrative” operations, including the 

starting and stopping of performance counters on the 

cluster. 

 

 
Figure 5: screenshot of the cluster browser 

3.2.3. Daphne, the Job Browser 

Figure 6 shows a screen-shot of the Daphne job 

browser, the most complex and useful tool in the set. The 

job browser GUI is divided into three vertical panes, 

representing the natural job structure hierarchy, from left 

to right.  

 

 

 
Figure 6: Screenshot of Daphne, the job browser. 
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The job state pane (left) shows global job information. 

At the bottom-left is a depiction the job plan, each oval 

representing a stage. It is worth pointing that there is no 

simple one-to-one correspondence between the static job 

plan and the vertices of the job executed, since Dryad can 

alter the job plan dynamically. Dryad can execute each 

vertex many times, due either to failures or speculative 

execution. Also, Dryad can dynamically remove and 

insert vertices or stages while a job is executing. For this 

reason the browser can display either static or dynamic 

views of the job. The user can select one of the job stages 

by clicking on the job plan. The oval circled with a bold 

line is the selected stage. 

The selected stage (Apply_44 in this figure) is 

displayed in the central pane. The middle of the central 

pane displays the LINQ code executed by the selected 

stage (a DryadApply statement). The stage information 

includes the list of all vertices in the stage (bottom 

middle); 10 vertices are shown in the figure. The user can 

click on a vertex to select it (in the figure vertex 

Apply_44[4] is selected). Information specific to the 

selected vertex is shown in the right (vertex) pane. 

The rightmost pane allows the user to further drill-

down into the selected vertex (Apply_44[4]) state. The 

user can visualize vertex inputs, outputs, work directory, 

logs or standard output. Our current implementation 

discovers this information by browsing remotely the files 

in the vertex sandbox.  

3.2.3 Performance data collection 

To diagnose job-level performance problems we have 

built support to manipulate of performance counters 

collection on the cluster during job execution. Our tools 

include a GUI to visualize the performance data and a set 

of analyses for discovering performance anomalies using 

statistical methods. These tools have been described in a 

previous publication [8], but have now been refactored to 

use the JOM. 

Each machine in the cluster collects measurements for 

the same set of counters and writes the measurements in 

a segmented log file persisted on the local disk. The user 

can initiate the collection of performance counters 

corresponding to a completed job from the cluster 

browser. Due to the large volume of data that needs to be 

collected (requiring scanning of potentially thousands of 

logs from each machine), the data collection is 

implemented as a DryadLINQ job. Normally the counter 

collection is a post-mortem activity. The collection job 

performs a large distributed join by selecting from the 

perfmon logs on each machine only the measurements 

corresponding to vertices that ran on that machine. 

4. Failure Diagnosis 

One of the hardest tasks for a novice DryadLINQ 

application programmer is to understand the reasons for 

failing jobs. Diagnosing is difficult in part due to the 

complex chain of invocations shown in Figure 3. The 

various software layers involved were not designed to 

relay structured job failure information from the cluster 

to the client application (i.e., there is no direct 

communication channel from the Dryad job manager 

process back to the client application, which crosses the 

firewall in the reverse direction and tunnels through the 

cluster scheduler and job submission libraries). 

Additional complexity stems from the fact that jobs can 

fail in many different ways, so developers have to know 

where to look for the failures. For example, application-

level errors may result in vertices crashing or 

deadlocking. The vertex runtime attempts to trap all 

unhandled exceptions and to save the managed stack 

trace at the exception point, but some vertex errors do not 

generate stack traces (in particular, stack overflow 

exceptions). Obscure errors can be caused by usage of 

improper library versions (such as using mismatched 

versions of .Net or Dryad libraries).  Data corruption can 

affect many seemingly unrelated vertices (e.g., 

corruption on a disk storing inputs for many different 

vertices). Moreover, some errors are benign, and can be 

overcome by the automatic fault-tolerance capabilities of 

Dryad. When multiple distinct errors occur in a single 

job execution they are difficult to disentangle. 

To help users navigate the complex error conditions we 

have built an automatic diagnosis tool. The diagnostic 

uses a decision tree to pinpoint the root cause of a job 

failure. The decision tree is quite complex, and 

aggregates many sources of information starting from the 

JOM: the job manager standard output, the job manager 

error logs, vertex error logs, the vertex stack traces, and 

statistical analyses for correlated failures across 

machines. The job failure decision tree is composed of 

two sub-trees: the root tree performs job-level diagnosis 

(e.g., incorrect job submissions, cluster-related problems, 

etc.). The top-level tree invokes a vertex-level decision 

tree if it decides that job failure is caused by a specific 

vertex which fails deterministically.  

The decision tree is the least portable of our tools. 

While some of code is generic, many parts had to be 

specialized for failures specific to the cluster runtime 

used or a specific software version employed (different 

software versions fail in very different ways). 

The decision tree approach is naturally incomplete and 

can fail provide a diagnostic for conditions which are not 

encoded in the tree. The decision tree attempts to locate 

the root cause of a failure, which is often quite different 

from the low-level error code generated the runtime 

which relays the error. 

The job and cluster browsers allow the developers to 

invoke the decision trees (both for jobs and vertices) with 

a single mouse click. The decision tree can be used also 

on running jobs (which haven‟t yet failed) if the jobs 

have a significant number of vertex failures (which may 



 

 

 

indicate impending job failure or infrastructure/hardware 

malfunctions). 

The job diagnosis should be integrated into the job 

submission software layer from Figure 2, to 

automatically provide the developers with high-level 

error messages about jobs that fail. We have not yet done 

this integration. 

We have also built a cluster monitoring service that 

builds a catalog of all job failures encountered. This tool 

has helped us improve the coverage of the decision tree, 

by pointing out incomplete diagnoses. The service 

automatically emails to the users a diagnosis of their 

failed jobs; it also emails the DryadLINQ developers 

every time a failure seems to be due to a bug in 

DryadLINQ, and it emails the cluster operators when 

failures seem to be due to hardware-level malfunctions. 

This service has helped DryadLINQ developers prioritize 

fixing bugs which happen frequently.  

5. Debugging 

When a job crashes the application developer needs to 

debug it. The simplest case is when a vertex fails while 

executing the managed code written by the user; then the 

vertex generates a stack trace relayed back to the job 

manager. However, even in this simple case the stack 

trace contains references to the code generated by 

DryadLINQ, which can be quite different from the 

original user LINQ query.  

Often the vertex stack trace is not enough to pinpoint 

the root cause of a failure. For this reason we offer 

several debugging scenarios. 

5.1 Vertex debugging on the client machine 

This scenario takes advantage of the fact that Dryad job 

vertices are meant to be re-executed in case of failure. 

The Dryad runtime generates several scripts to support 

manual re-execution of vertices in the correct 

environment. 

We have integrated this debugging scenario within the 

Daphne job browser. The user can select a vertex by 

browsing the job and then initiate local debugging using 

a mouse click. The result of this action is a process 

running under the control of a local debugger running the 

vertex code on the developer machine. 

Debugging is implemented by creating a temporary 

“sandbox” on the local machine and copying the content 

of the PN‟s vertex sandbox from the cluster. The 

debugging tool also locates relevant pdb files (containing 

debugging information and symbol mappings) and the 

cluster configuration files that are needed by the vertex 

runtime for proper execution. These files are obtained 

from the client machine. 

5.2 Vertex profiling on the local machine 

To diagnose vertex-level performance problems we 

offer a profiling scenario. Profiling is also integrated in 

the job browser. Profiling proceeds similarly to 

debugging, but instead of attaching a debugger to the 

local vertex, it uses the Visual Studio managed code 

profiling facilities to instrument and execute a vertex and 

generate a traditional Visual Studio managed code 

profiling report. 

5.3 Interactive debugging on the cluster 

DryadLINQ attempts to provide a single-machine-like 

environment for distributed applications. Ideally, 

debugging DryadLINQ applications should also provide 

the illusion of executing the debugger on a single 

machine. The user should be able to set conditional 

breakpoints, inspect the stack and heap, and start and 

stop execution.  

The scenario we present in this section attempts to 

emulate an interactive debugging session while the 

application is executing at scale, on the cluster.  

Note that there are some fundamental obstacles to 

debugging interactively large-scale applications using a 

traditional debugging metaphor. For example, a Dryad 

job stage can encompass thousands of processes, which 

could all hit the same breakpoint. The user interface of 

the debugger does not scale to handle thousands of 

simultaneous processes. Also, each vertex has a separate 

address space, with different values for the variables. As 

such, the value of a conditional breakpoint expression 

can be different in each vertex. 

In the interactive debugging scenario the users run the 

client DryadLINQ application in a Visual Studio 

debugging session on the local client machine. The user 

can create and insert conditional breakpoints. The 

application runs and spawns the Dryad computation on 

the cluster. When a Dryad vertex reaches code guarded 

by a conditional breakpoint a new “process” window 

appears in the debugger, as shown in Figure 8. 

The experience of debugging the application in this 

way is similar to debugging a traditional multi-threaded 

application, except that each vertex runs in a separate 

address space on a separate machine. The debugging is 

performed by using the local visual studio debugger to 

perform remote debugging on vertex processes on the 

cluster. 

We had to make several changes to the DryadLINQ 

compiler and runtime to enable this functionality: 

1. The Visual studio remote debugging stub executable 

(msvmon.exe) is shipped as a resource of the Dryad job 

(which makes it available to all vertices in their 

sandbox). 

2. At start-up each vertex launches a remote debugger 

stub process. 

 



 

 

 

 

 
Figure 7: Screenshot of Visual Studio showing interactive debugging on the cluster.  

Each vertex is shown as a separate process that is being debugged.

3. The vertex next sends a “notification” to the 

application running on the client machine, signaling its 

readiness to be debugged. Since the software stack 

(shown in Figure 2) includes no such notification 

channel between the vertices and the client application, 

we have emulated the “notification” mechanism 

entirely on the client-side machine, by using the 

DryadLINQ JOM. We have integrated the JOM with 

the job submission library. The JOM polls the cluster 

to update the job state periodically and sends 

notifications to client application when interesting 

vertex state events have been discovered (e.g., the 

debugged vertex has been started).  

4. To give fine-grained control to the user on which 

vertices are to be debugged, we augmented the 

DryadLINQ API to expose to the user application a 

static “vertex_to_debug” delegate. The delegate is 

evaluated by each vertex on its local state; when the 

delegate returns „true‟ the vertex is debugged remotely. 

With the help of this delegate users can restrict the 

range of vertices to be debugged based on the vertex 

runtime environment (e.g., debug only the first 3 

vertices of a stage).  

5. Each debugged vertex enters a loop waiting for a 

remote debugger to be attached.  

6. When it receives a notification that a vertex is 

waiting for a debugger, the client-side DryadLINQ 

application attaches a remote debugger to the vertex. 

Note that attaching a debugger requires suitable 

permissions to cross the cluster firewall and to debug 

processes on the cluster. 

7. The DryadLINQ application running on the client 

uses COM automation to instruct the client-side 

debugger to attach to the remote process. 

5. Related work 

In recent years, there has been a large body of 

research on high-level programming frameworks for 

large-scale distributed systems like DryadLINQ [4], 

Hadoop [2], Pig [3] and Map Reduce [1]. Debugging 

remains a big challenge for systems built using these 

frameworks [12], [13]. Many systems, including Pig 

and DryadLINQ offer a local debugging mode which 

can be used to execute the application on the client 

workstation on a small dataset. This mode is useful for 

finding some types of application bugs, but it 

obviously does not help with errors caused by large 

scale data (e.g., an integer overflow when counting the 

elements in a large set), or errors due to the cluster 

environment.  

To debug failures on the cluster cases users resort to 

inspecting logs on the cluster machines manually. 

Cloudera tools [14] provide a rich set of tools, some of 

which overlap in functionality with our cluster and job 

browser. Chukwa [15] is a log collection framework 

that can be used to monitor Hadoop clusters, which 

includes tools for resource visualization; it is related to 

the Artemis component of our toolkit. Jiaqi Tan et al 

have done extensive work on diagnosing problems for 

Hadoop computations [17], [18], [16] using a variety 

of tools, including visualization, and statistical 

methods; these are also related to the Artemis 

performance analysis component of Daphne. 

Windows Azure [19] offers a debugging scenario 

using Visual Studio which is related to our client 

vertex debugging scenario. 

The main contribution of our work is the system 

architecture for building a rich suite of job monitoring 

tools, based on a job object model. We also offer 

several powerful interactive and debugging scenarios, 

including live debugging of vertices on a cluster 

initiated from a debugger running on the client 

workstation. Our solution for this problem is inspired 

by the Visual Studio debugging support for MPI 

applications [11].  

6. Summary 

For the foreseeable future programmers will need to 

be able to understand details of the execution of their 

large-scale applications. This document describes our 

attempt to address this problem by building a set of 

abstractions and tools for understanding distributed 

computation state: the key abstraction is a DryadLINQ 

job object model; using the model it is relatively easy 

to build a rich set of portable tools for distributed job 

state visualization, performance collection and 

profiling, failure diagnosis, and debugging. These tools 

have been very well received by the community of 



 

  

DryadLINQ system and application developers; in 

particular, these tools are greatly helping new users to 

overcome the steep learning curve of programming 

large clusters. Even power users and system 

developers are finding these tools to be very 

convenient when they deal with a port of DryadLINQ 

to a new unfamiliar cluster platform, 
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