
DBSP: Automatic Incremental View Maintenance for RichQuery
Languages

Mihai Budiu
VMware Research

mbudiu@vmware.com

Tej Chajed
VMware Research

tchajed@vmware.com

Frank McSherry
Materialize Inc.

mcsherry@materialize.com

Leonid Ryzhyk
VMware Research

lryzhyk@vmware.com

Val Tannen
University of Pennsylvania

val@seas.upenn.edu

ABSTRACT
Incremental view maintenance (IVM) has long been a central prob-
lem in database theory. Many solutions have been proposed for
restricted classes of database languages, such as the relational al-
gebra, or Datalog. These techniques do not naturally generalize
to richer languages. In this paper we give a general, heuristic-free
solution to this problem in 3 steps: (1) we describe a simple but
expressive language called DBSP for describing computations over
data streams; (2) we give a new mathematical definition of IVM
and a general algorithm for solving IVM for arbitrary DBSP pro-
grams, and (3) we show how to model many rich database query
languages using DBSP (including the full relational algebra, queries
over sets and multisets, arbitrarily nested relations, aggregation,
flatmap (unnest), monotonic and non-monotonic recursion, stream-
ing aggregation, and arbitrary compositions of all of these). SQL
and Datalog can both be implemented in DBSP. As a consequence,
we obtain efficient incremental view maintenance algorithms for
queries written in all these languages.

PVLDB Reference Format:
Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val Tannen.
DBSP: Automatic Incremental View Maintenance for Rich Query
Languages. PVLDB, 16(7): 1601-1614, 2023.
doi:10.14778/3587136.3587137

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/vmware/database-stream-processor.

1 INTRODUCTION
Incremental view maintenance (IVM) is an important and well-
studied problem in databases [25]. The IVM problem can be stated
as follows: given a database 𝐷𝐵 and a view 𝑉 described by a query
𝑄 that is a function of the database, i.e. 𝑉 = 𝑄 (𝐷𝐵), maintain the
contents of 𝑉 in response to changes of the database, ideally more
efficiently than by simply reevaluating 𝑄 (𝐷𝐵) from scratch. We
want an algorithm to evaluate 𝑄 over the changes Δ𝐷𝐵 applied to
the database, since often changes are small |Δ𝐷𝐵 | ≪ |𝐷𝐵 |.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 7 ISSN 2150-8097.
doi:10.14778/3587136.3587137

This paper provides a new perspective by proposing a new def-
inition of IVM based on a streaming model of computation. Our
model is inspired by Digital Signal Processing DSP [44], applied
to databases, hence the name DBSP. Whereas previous IVM solu-
tions are based on defining a notion of a (partial) derivative of 𝑄
with respect to its inputs, our definition only requires computing
derivatives of streams as functions of time. Derivatives of streams
are always well-defined if the data computed on has a notion of
difference that satisfies some simple mathematical properties —
specifically, that it forms a commutative group. (Fortunately, rela-
tional databases can be modeled in such a way [23, 33].)

DBSP has several attractive properties:
(1) it is expressive. (a) It can be used to define precisely multiple
concepts: traditional queries, streaming computations, and incre-
mental computations. (b) We have been able to express in DBSP the
full relational algebra, computations over sets and bags, nested rela-
tions, aggregation, flatmap (unnest), monotonic and nonmonotonic
recursion, stratified negation, while-relational programs, window
queries, streaming queries, streaming aggregation, and incremental
versions of all of the above. In fact, we have built a DBSP imple-
mentation of the complete SQL language (§8).
(2) it is simple. DBSP has only 4 operators, and it is built entirely
on elementary concepts such as functions and algebraic groups.
(3) mathematically precise. All the results in this paper have been
formalized and checked using the Lean proof assistant [18].
(4) it ismodular, in the following two ways: (a) the incremental
version of a complex query can be reduced recursively to incremen-
talizing its component subqueries. This gives a simple, syntactic,
heuristic-free algorithm (Algorithm 4.6) that converts an arbitrary
DBSP query plan to its incremental form. (b) Extending DBSP to
support new primitive operators is easy, and they immediately ben-
efit from the rest of the theory of incrementalization. An important
consequence of modularity is that the theory can be efficiently
implemented, as we briefly discuss in §8.

The core concept of DBSP is the stream, which is used to model
changes over time. We use S𝐴 to denote the type of infinite streams
with values of type 𝐴. If 𝑠 ∈ S𝐴 is a stream, then 𝑠 [𝑡] ∈ 𝐴, 𝑡 ∈ N
is the 𝑡-th element of 𝑠 , also referred to as the value of the stream
at time 𝑡 . A streaming operator is a function that consumes one or
more streams and produces another stream. We show streaming
computations with diagrams, also called “circuits”, where boxes
are computations and streams are arrows. The following diagram
shows a stream operator𝑇 : S𝐴 ×S𝐵 → S𝐶 , consuming two input
streams 𝑠0 and 𝑠1 and producing one output stream 𝑠:

https://doi.org/10.14778/3587136.3587137
https://github.com/vmware/database-stream-processor
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3587136.3587137

𝑠0

𝑠1
𝑇 𝑠

We generally think of streams as sequences of “small” values,
such as insertions or deletions in a database. However, we also treat
the whole database as a stream of database snapshots. We model
a database as a stream 𝐷𝐵 ∈ S𝑆𝐶𝐻 , where 𝑆𝐶𝐻 is the database
schema. Time is not wall-clock time, but counts the transactions
applied to the database. Since transactions are linearizable, they
have a total order. 𝐷𝐵 [𝑡] is the snapshot of the database contents
after 𝑡 transactions have been applied.

Database transactions also form a stream Δ𝐷𝐵, this time a stream
of changes, or deltas that are applied to the database. The values of
this stream are defined by (Δ𝐷𝐵) [𝑡] = 𝐷𝐵 [𝑡]−𝐷𝐵 [𝑡−1], where “−”
stands for the difference between two databases, a notion that we
will soon make more precise. The Δ𝐷𝐵 stream is produced from the
𝐷𝐵 stream by the stream differentiation operator D; this operator
produces as its output the stream of changes from its input stream;
we have thus D(𝐷𝐵) = Δ𝐷𝐵.

Conversely, the database snapshot at time 𝑡 is the cumulative
result of applying all transactions up to 𝑡 : 𝐷𝐵 [𝑡] = ∑︁

𝑖≤𝑡 Δ𝐷𝐵 [𝑖].
The operation I, adding up all changes, is another basic stream
operator, is stream integration, the inverse of differentiation. The
following diagram shows the relationship between the streams
Δ𝐷𝐵 and 𝐷𝐵:

Δ𝐷𝐵 I 𝐷𝐵 D Δ𝐷𝐵

Suppose we are given a query 𝑄 : 𝑆𝐶𝐻 → 𝑆𝐶𝐻 defining a view
𝑉 . What is a view in a streaming model? It is also a stream! For
each snapshot of the database stream we have a snapshot of the
view: 𝑉 [𝑡] = 𝑄 (𝐷𝐵 [𝑡]). In general, given an arbitrary function
𝑓 : 𝐴 → 𝐵, we define a streaming “version” of 𝑓 , denoted by ↑𝑓
(read as “𝑓 lifted”), which applies 𝑓 to every element of the input
stream independently. We can thus write 𝑉 = (↑𝑄) (𝐷𝐵).

Armed with these basic definitions, we can precisely define IVM.
What does it mean to maintain a view incrementally? An efficient
maintenance algorithm needs to compute the changes to the view
given the changes to the database. Given a query 𝑄 , a key contri-
bution of this paper is the definition of its incremental version 𝑄Δ,
using stream integration and differentiation: 𝑄Δ def

= 𝐷 ◦ ↑𝑄 ◦ 𝐼 . The
incremental version of the query maintains the changes to the view
Δ𝑉

def
= D(𝑉) = D(↑𝑄 (I(Δ𝐷𝐵))), depicted graphically as:

Δ𝐷𝐵 I ↑𝑄 D Δ𝑉
𝐷𝐵 𝑉

The incremental version of a query is a stateful streaming oper-
ator which computes directly on changes and produces changes.
The incremental version of a query is thus always well-defined.
The above definition shows one way to compute a query incre-
mentally, but applying it naively produces an inefficient execution
plan, since it will reconstruct the database at each step. In §3 we
show how algebraic properties of the ·Δ transformation are used to
optimize the implementation of 𝑄Δ. The first key property is that
the incremental composition of subqueries is the composition of
incremental subqueries: (𝑄1 ◦𝑄2)Δ = 𝑄1Δ ◦𝑄2Δ. The second key
property is that essentially all primitive database operations have
efficient incremental versions. More precisely, they are faster than

non-incremental versions by a factor of 𝑂 (|𝐷𝐵 |/|Δ𝐷𝐵 |).
Armed with this general theory of incremental computation, in

§4 we show how to model relational queries in DBSP. This immedi-
ately gives us a general algorithm to compute the incremental ver-
sion of any relational query. These results were previously known,
but they are cleanly modeled by DBSP. §5.1 shows how stratified-
monotonic recursive Datalog programs can be implemented in
DBSP, and §6 gives incremental streaming computations for recur-
sive programs. For example, given an implementation of transitive
closure in the natural recursive way, our algorithm produces a pro-
gram that efficiently maintains the transitive closure of a graph as
the graph is changed by adding and deleting edges.

In this paper we omit proofs, they can be found in an extensive
companion technical report [12]. We have formalized this theory in
the Lean proof assistant [14]; our formalization includes machine-
checked proofs for all the theorems in this paper.

This paper makes the following contributions:
(1) DBSP, a simple but expressive language for streaming com-
putation. DBSP gives an elegant formal foundation unifying the
manipulation of streaming and incremental computations.
(2) An algorithm for incrementalizing any streaming computation
expressed in DBSP.
(3) An illustration of how DBSP can model various query classes,
such as relational algebra, nested relations, aggregations, and stratified-
monotonic Datalog.
(4) The first general and machine-checked theory of IVM.
(5) A high-performance open-source implementation of DBSP as a
general-purpose streaming query engine in Rust.

2 STREAM COMPUTATIONS
The core notion of our theory of IVM is the stream. In this section
we introduce formally streams as infinite sequences of values, and
define computations on streams. Stream operators (§2.1) are the
basic building block of stream computations. Operators can be
composed with simple rules (§2.2) into complex computational
circuits. In (§2.3) we introduce two essential operations on streams:
integration and differentiation.

2.1 Streams and stream operators
N is the set of natural numbers (from 0), B is the set of Booleans, Z
is the set of integers, and R is the set of real numbers.
Definition 2.1 (stream): Given a set 𝐴, a stream of values from
𝐴, or an 𝐴-stream, is a function N→ 𝐴. We denote by S𝐴

def
= {𝑠 | 𝑠 :

N→ 𝐴} the set of all 𝐴-streams.
When 𝑠 ∈ S𝐴 and 𝑡 ∈ N we write 𝑠 [𝑡] for the 𝑡-th element of the

stream 𝑠 instead of the usual 𝑠 (𝑡). We think of the index 𝑡 ∈ N as
(discrete) time and of 𝑠 [𝑡] ∈ 𝐴 as the value of the the stream 𝑠 “at
time” 𝑡 . For example, the stream of natural numbers 𝑖𝑑 ∈ SN given
by id [𝑡] = 𝑡 is the sequence of values [0 1 2 3 4 · · ·].
Definition 2.2 (stream operator): A stream operator with 𝑛 in-
puts is a function 𝑇 : S𝐴0 × · · · × S𝐴𝑛−1 → S𝐵 .

In general we use “operator” for functions on streams, and “func-
tion” for computations on “scalar” values.

DBSP is an extension of the simply-typed lambda calculus —
we will introduce its elements gradually. However, in many cases

we find it more readable to use circuit diagrams to depict DBSP
programs. (Circuits do hide the order of the inputs of an operator;
for non-commutative operators we have to distinguish the operator
inputs.) In a circuit a rectangle represents an operator application
(labeled with the operator name, e.g.,𝑇), while an arrow is a stream.

Stream operator composition (function composition) is shown as
chained circuits. The composition of a binary operator 𝑇 : S𝐴 ×
S𝐵 → S𝐴 with the unary operator 𝑆 : S𝐴 → S𝐵 into the computa-
tion _𝑠.𝑇 (𝑇 (𝑠, 𝑆 (𝑠)), 𝑆 (𝑠)) : S𝐴 → S𝐴 is:

𝑠

𝑆 𝑇 𝑇

𝑆

𝑜

Definition 2.3: (lifting) Given a (scalar) function 𝑓 : 𝐴 → 𝐵, we
define a stream operator ↑𝑓 : S𝐴 → S𝐵 by lifting the function 𝑓
pointwise in time: (↑𝑓) (𝑠) def

= 𝑓 ◦ 𝑠 . Equivalently, ((↑𝑓) (𝑠)) [𝑡] def
=

𝑓 (𝑠 [𝑡]). This extends to functions of multiple arguments.
For example, (↑(_𝑥 .(2𝑥))) (𝑖𝑑) = [0 2 4 6 8 · · ·].

Proposition 2.4 (distributivity): Lifting distributes over function
composition: ↑(𝑓 ◦ 𝑔) = (↑𝑓) ◦ (↑𝑔).

We say that two DBSP programs are equivalent if they compute
the same input-output function on streams. We use the symbol ≅
to indicate that two circuits are equivalent. For example, Proposi-
tion 2.4 states the following circuit equivalence:
𝑠 ↑𝑔 ↑𝑓 𝑜 ≅ 𝑠 ↑(𝑓 ◦ 𝑔) 𝑜

2.2 Streams over abelian groups
For the rest of the technical development we require the set of
values 𝐴 of a stream S𝐴 to form a commutative group (𝐴, +, 0𝐴,−).
The plus defines what it means to add new data, while the minus
allows us to compute differences (deltas); the group structure will
allow us to reorder insertions and deletions. We show later that
this restriction is not a problem for using DBSP with relational data.
Now we introduce some useful operators and study their properties.

2.2.1 Delays and time-invariance.

Definition 2.5 (Delay): The delay operator1 produces an output
stream by delaying its input by one step: 𝑧−1

𝐴
: S𝐴 → S𝐴:

𝑧−1𝐴 (𝑠) [𝑡] def
=

{︄
0𝐴 when 𝑡 = 0
𝑠 [𝑡 − 1] when 𝑡 ≥ 1

We often omit the type parameter 𝐴, and write just 𝑧−1. For
example, 𝑧−1 (id) = [0 0 1 2 3 · · ·].
Definition 2.6 (Time invariance): A stream operator 𝑆 : S𝐴 → S𝐵
is time-invariant (TI) if 𝑆 (𝑧−1

𝐴
(𝑠)) = 𝑧−1

𝐵
(𝑆 (𝑠)) for all 𝑠 ∈ S𝐴; in

other words, if the following two circuits are equivalent:
𝑠 𝑆 𝑧−1 𝑜 ≅ 𝑠 𝑧−1 𝑆 𝑜

This definition extends naturally to operators with multiple inputs.
The composition of TI operators of any number of inputs is TI.

The delay operator 𝑧−1 is TI. DBSP only uses TI operators.

2.2.2 Causal and strict operators.

Definition 2.7 (Causality): A stream operator 𝑆 : S𝐴 → S𝐵 is
causal when for all 𝑠, 𝑠 ′ ∈ S𝐴 , and all times 𝑡 we have: (∀𝑖 ≤
1The name 𝑧−1 comes from the DSP literature, and is related to the z-transform [44].

𝑡 .𝑠 [𝑖] = 𝑠 ′[𝑖]) ⇒ 𝑆 (𝑠) [𝑡] = 𝑆 (𝑠 ′) [𝑡] .
In other words, the output value at time 𝑡 can only depend on input
values from times 𝑡 ′ ≤ 𝑡 . Operators produced by lifting are causal,
and 𝑧−1 is causal. All DBSP operators are causal. The composition
of causal operators of any number of inputs is causal.
Definition 2.8 (Strictness): A stream operator, 𝐹 : S𝐴 → S𝐵 is
strict if ∀𝑠, 𝑠 ′ ∈ S𝐴,∀𝑡 ∈ N we have: (∀𝑖 < 𝑡 . 𝑠 [𝑖] = 𝑠 ′[𝑖]) ⇒
𝐹 (𝑠) [𝑡] = 𝐹 (𝑠 ′) [𝑡] .

In other words, the 𝑡-th output of 𝐹 (𝑠) can depend only on “past”
values of the input 𝑠 , between 0 and 𝑡 − 1. In particular, 𝐹 (𝑠) [0] =
0𝐵 is the same for all 𝑠 ∈ S𝐴 . Strict operators are causal. Lifted
operators in general are not strict. 𝑧−1 is strict.
Proposition 2.9: For a strict 𝐹 : S𝐴 → S𝐴 the equation 𝛼 =

𝐹 (𝛼) has a unique solution 𝛼 ∈ S𝐴 , denoted by fix𝛼.𝐹 (𝛼).
Thus every strict operator from a set to itself has a unique fixed

point. The simple proof relies on strong induction, showing that
the solution 𝛼 [𝑡] depends only on the values of 𝛼 prior to 𝑡 .

Consider a circuit with a strict feedback edge:

𝑠 𝑇 𝛼

𝐹

This circuit is a well-defined function on streams:
Lemma 2.10: If 𝐹 : S𝐵 → S𝐵 is strict and 𝑇 : S𝐴 × S𝐵 → S𝐵
is causal, the operator 𝑄 (𝑠) = fix𝛼.𝑇 (𝑠, 𝐹 (𝛼)) is well-defined and
causal. If, moreover, 𝐹 and 𝑇 are TI then so is 𝑄 .

All DBSP computations are built using just lifted functions and
delays. We add two more operators in §6.

2.3 Integration and differentiation
Remember that we require the elements of a stream to come from
an abelian group 𝐴. Streams themselves form an abelian group:
Proposition 2.11: The structure (S𝐴, +, 0,−), obtained by lifting
the + and unary − operations of 𝐴, is an abelian group. 0 is the
stream with all values 0𝐴 .
Stream addition and negation are causal, TI operators.
Definition 2.12: Given abelian groups 𝐴 and 𝐵 we call a stream
operator 𝑆 : S𝐴 → S𝐵 linear if it is a group homomorphism, that is,
𝑆 (𝑎 + 𝑏) = 𝑆 (𝑎) + 𝑆 (𝑏) (and therefore 𝑆 (0) = 0 and 𝑆 (−𝑎) = −𝑆 (𝑎)).

Given a linear function 𝑓 : 𝐴 → 𝐵, the stream operator ↑𝑓 is
linear and TI (LTI). 𝑧−1 is also LTI.
Definition 2.13: (bilinear) A function of two arguments 𝑓 : 𝐴 ×
𝐵 → 𝐶 with𝐴, 𝐵,𝐶 groups, is bilinear if it is linear separately in each
argument (i.e., it distributes over addition): ∀𝑎, 𝑏, 𝑐, 𝑑 .𝑓 (𝑎 + 𝑏, 𝑐) =
𝑓 (𝑎, 𝑐) + 𝑓 (𝑏, 𝑐), and 𝑓 (𝑎, 𝑐 + 𝑑) = 𝑓 (𝑎, 𝑐) + 𝑓 (𝑐, 𝑑) .

This definition extends to stream operators. The lifting of a
bilinear function 𝑓 is a bilinear stream operator ↑𝑓 . An example is
lifted multiplication: 𝑓 : SN × SN → SN, 𝑓 (𝑎, 𝑏) [𝑡] = 𝑎[𝑡] · 𝑏 [𝑡].

The “feedback loop” of a linear operator is linear:
Proposition 2.14: Let 𝑆 be a unary, causal, LTI operator. The
operator 𝑄 (𝑠) = fix𝛼.𝑆 (𝑠 + 𝑧−1 (𝛼)) is well-defined and LTI:

𝑠 + 𝑆 𝛼

𝑧−1

Definition 2.15 (Differentiation): The differentiation operator
DS𝐴

: S𝐴 → S𝐴 is defined by: D(𝑠) def
= 𝑠 − 𝑧−1 (𝑠).

𝑠 + D(𝑠)

𝑧−1 −

We generally omit the type, and write just D. The value of
D(𝑠) [𝑡] = 𝑠 [𝑡] − 𝑠 [𝑡 − 1] if 𝑡 > 0. As an example, D(id) =

[0 1 1 1 1 · · ·].
If 𝑠 is a stream, then D(𝑠) is the stream of changes of 𝑠 .

Proposition 2.16: D is causal and LTI.
The integration operator “reconstitutes” a stream from its changes:

Definition 2.17 (Integration): The integration operator IS𝐴
:

S𝐴 → S𝐴 is defined by I(𝑠) def
= _𝑠.fix𝛼.(𝑠 + 𝑧−1 (𝛼)):

s + I(𝑠)

𝑧−1

We also generally omit the type, and write just I. This is the con-
struction from Proposition 2.14 using the identity function for 𝑆 .
Proposition 2.18: I(𝑠) is the discrete (indefinite) integral applied
to the stream 𝑠: I(𝑠) [𝑡] = ∑︁

𝑖≤𝑡 𝑠 [𝑖].
As an example, I(id) = [0 1 3 6 10 · · ·].

Proposition 2.19: I is causal and LTI.
Theorem 2.20 (Inversion): Integration and differentiation are in-
verses of each other: ∀𝑠 .I(D(𝑠)) = D(I(𝑠)) = 𝑠 .
𝑠 I D 𝑜 ≅ 𝑠 𝑜 ≅ 𝑠 D I 𝑜

3 INCREMENTAL VIEWMAINTENANCE
Here we define IVM and analyze its properties.
Definition 3.1: Given a unary stream operator 𝑄 : S𝐴 → S𝐵 we
define the incremental version of 𝑄 as:

𝑄Δ def
= D ◦𝑄 ◦ I . (3.1)

𝑄Δ has the same “type” as 𝑄 : 𝑄Δ : S𝐴 → S𝐵 . For an operator
with multiple inputs we define the incremental version by applying
I to each input independently: e.g., if 𝑇 : S𝐴 × S𝐵 → S𝐶 then
𝑇Δ (𝑎, 𝑏) def

= D(𝑇 (I(𝑎),I(𝑏))).

Δ𝑠 I 𝑄 D Δ𝑜
𝑠 𝑜

If 𝑄 (𝑠) = 𝑜 is a computation, then 𝑄Δ performs the “same” compu-
tation as 𝑄 , but between streams of changes Δ𝑠 and Δ𝑜 .

Notice that our definition of incremental computation is mean-
ingful only for streaming computations; this is in contrast to classic
definitions, e.g. [25] which consider only one change. Generaliz-
ing the definition to operate on streams gives us additional power,
especially when operating with recursive queries.

The following proposition is one of our central results:
Proposition 3.2: (Properties of the incremental version):
inversion: 𝑄 ↦→ 𝑄Δ is bijective; its inverse is 𝑄 ↦→ I ◦𝑄 ◦ D.
invariance: +Δ = +, (𝑧−1)Δ = 𝑧−1,−Δ = −,IΔ = I,DΔ = D
push/pull: 𝑄 ◦ I = I ◦𝑄Δ; D ◦𝑄 = 𝑄Δ ◦ D
chain: (𝑄1 ◦𝑄2)Δ = 𝑄1Δ ◦𝑄2Δ (Generalizes to multiple inputs.)
add: (𝑄1 +𝑄2)Δ = 𝑄1Δ +𝑄2Δ

cycle: (_𝑠.fix𝛼.𝑇 (𝑠, 𝑧−1 (𝛼)))Δ = _𝑠.fix𝛼.𝑇Δ (𝑠, 𝑧−1 (𝛼))
The chain rule states that these two circuits are equivalent:
𝑖 I 𝑄1 𝑄2 D 𝑜 ≅ 𝑖 𝑄1

Δ 𝑄2
Δ 𝑜

In other words, to incrementalize a composite query you can
incrementalize each sub-query independently. This gives us
a simple, syntax-directed, deterministic recipe for computing the
incremental version of an arbitrarily complex query.

The cycle rule states that the following circuits are equivalent:
𝑠 I 𝑇 D 𝑜

𝑧−1
≅

𝑠 𝑇 Δ 𝑜

𝑧−1

In other words, the incremental version of a feedback loop
around a query is just the feedback loop with the incremental
query for its body. The significance of this result will be apparent
when we implement recursive queries.

To execute incremental queries efficiently, we want to compute
directly on streams of changes, without integrating them. The in-
variance property above shows that stream operators +, −, and 𝑧−1
are identical to their incremental versions. The following theorems
generalize this to linear and bi-linear operators:
Theorem 3.3 (Linear): For an LTI operator 𝑄 we have 𝑄Δ = 𝑄 .
Theorem 3.4 (Bilinear): For a bilinear TI operator × we have
(𝑎 × 𝑏)Δ = 𝑎 ×𝑏 + 𝑧−1 (I(𝑎)) ×𝑏 + 𝑎 × 𝑧−1 (I(𝑏)) = I(𝑎) ×𝑏 +
𝑎 × 𝑧−1 (I(𝑏)). In pictures:

𝑎 I

𝑏 I
× D 𝑜≅

𝑎

𝑏

I

×

I

𝑧−1

𝑧−1

×

×

+ 𝑜 ≅

𝑎

𝑏

I

I 𝑧−1

×

×

+ 𝑜

Rewriting Theorem 3.4 using Δ𝑎 for the stream of changes to 𝑎
we get the familiar formula for incremental equi-joins: Δ(𝑎 × 𝑏) =
Δ𝑎 × Δ𝑏 + 𝑎 × (Δ𝑏) + (Δ𝑎) × 𝑏; equi-joins are indeed bilinear.

4 IVM FOR THE RELATIONAL ALGEBRA
Results in §2 and §3 apply to streams of arbitrary group values. In
this section we apply these results to IVM for relational databases.
As explained in the introduction, our goal is to efficiently compute
the incremental version of any relational query 𝑄 that defines a
database view.

However, we face a technical problem: the I and D operators
were defined on abelian groups, and relational databases in general
are not abelian groups, since they operate on sets. Fortunately,
there is a well-known tool in the database literature which converts
set operations into group operations by using Z-sets (also called
z-relations [22]) to represent sets.

We start by defining the Z-sets group, and then we review how
relational queries are converted into DBSP circuits over Z-sets.
This translation is efficiently incrementalizable because many basic
relational queries can be expressed using LTI Z-set operators §4.2.

4.1 Z-sets as an abelian group
Z-sets generalize database tables: think of a Z-set as a table where
each row has an associated weight, possibly negative.

Given a set 𝐴, we define Z-sets over 𝐴 as functions with finite
support from𝐴 to Z. These are functions 𝑓 : 𝐴 → Zwhere 𝑓 (𝑥) ≠ 0

for at most a finite number of values 𝑥 ∈ 𝐴. We also write Z[𝐴]
for the type of Z-sets with elements from 𝐴. Values in Z[𝐴] can
be thought of as key-value maps with keys in 𝐴 and values in Z,
justifying the array indexing notation. If𝑚 ∈ Z[𝐴] we write𝑚[𝑎]
instead of𝑚(𝑎), again using an indexing notation.

A particular Z-set 𝑚 ∈ Z[𝐴] can be denoted by enumerating
its elements that have non-zero weights and their corresponding
weights:𝑚 = {𝑥1 ↦→ 𝑤1, . . . , 𝑥𝑛 ↦→ 𝑤𝑛}. We call𝑤𝑖 ∈ Z theweight
of 𝑥𝑖 ∈ 𝐴. Weights can be negative.Wewrite that 𝑥 ∈𝑚 iff𝑚[𝑥] ≠ 0.
We also write𝑤 · 𝑥 for {𝑥 ↦→ 𝑤}.

Consider a concrete Z-set 𝑅 ∈ Z[string], defined by 𝑅 =

{joe ↦→ 1, anne ↦→ −1}. 𝑅 has two elements in its domain, joe
with weight 1 (so 𝑅 [joe] = 1), and anne with weight −1. We say
joe ∈ 𝑅 and anne ∈ 𝑅.

Since Z is an abelian ring, Z[𝐴] is also an abelian ring (and thus
a group). This group (Z[𝐴], +Z[𝐴] , 0Z[𝐴] ,−Z𝐴) has addition and
subtraction defined pointwise: (𝑓 +Z[𝐴]𝑔) (𝑥) = 𝑓 (𝑥)+𝑔(𝑥).∀𝑥 ∈ 𝐴.
The 0 element of Z[𝐴] is the function 0Z[𝐴] defined by 0Z[𝐴] (𝑥) =
0.∀𝑥 ∈ 𝐴. For example,𝑅+𝑅 = {joe ↦→ 2, anne ↦→ −2}. SinceZ-sets
form a group, all results from §2 apply to streams over Z-sets.
Z-sets generalize sets and bags. A set with elements from 𝐴 can

be represented as a Z-set by associating a weight of 1 with each
element. Bags are Z-sets where all weights are positive. Crucially, Z-
sets can also represent arbitrary changes to sets and bags. Negative
weights in a change represent elements that are being “removed”.
Definition 4.1: We say that a Z-set represents a set if the weight
of every element is one. We define a function to check this property
isset : Z[𝐴] → B given by:

isset(𝑚) def
=

{︃
true if𝑚[𝑥] = 1,∀𝑥 ∈𝑚
false otherwise

For our example isset(𝑅) = false, since 𝑅 [anne] = −1.
Definition 4.2: We say that a Z-set is positive (or a bag) if the
weight of every element is positive. We define a function to check
this property ispositive : Z[𝐴] → B. given by

ispositive(𝑚) def
=

{︃
true if𝑚[𝑥] ≥ 0,∀𝑥 ∈ 𝐴
false otherwise

We have ∀𝑚 ∈ Z[𝐴] .isset(𝑚) ⇒ ispositive(𝑚). ispositive(𝑅) =
false, since 𝑅 [anne] = −1.

We write𝑚 ≥ 0 when𝑚 is positive. For positive𝑚,𝑛 ∈ Z[𝐴] we
write𝑚 ≥ 𝑛 for iff𝑚 − 𝑛 ≥ 0. ≥ is a partial order.

We call a function 𝑓 : Z[𝐴] → Z[𝐵] positive if it maps positive
values to positive values: ∀𝑥 ∈ Z[𝐴], 𝑥 ≥ 0Z[𝐴] ⇒ 𝑓 (𝑥) ≥ 0Z[𝐵] .
We use the same notation for functions: ispositive(𝑓).
Definition 4.3 (distinct): The function distinct : Z[𝐴] → Z[𝐴]
“converts” a Z-set into a set:

distinct (𝑚) [𝑥] def
=

{︃
1 if𝑚[𝑥] > 0
0 otherwise

Notice that distinct “removes” duplicates from multisets, and
it also eliminates elements with negative weights. distinct (𝑅) =

{joe ↦→ 1}. While very simple, this definition of distinct has been
carefully chosen to enable us to implement the relational (set) op-
erators using Z-sets operators.

Generalizing circuit diagrams. From now on we will use circuits
to compute both on scalars (Z-sets in our case) and streams ofZ-sets.
We use the same graphical representation for functions on streams
or scalars: boxes with input and output arrows. For scalar functions
the “values” of the arrows are scalars instead of streams; otherwise
the interpretation of boxes as function application is unchanged.
We will thus use circuits to depict relational query plans.

4.2 Implementing relational operators
The fact that relational algebra can be implemented by computa-
tions on Z-sets has been shown before, e.g. [23]. The translation of
the relational operators to DBSP is shown in Table 1. The first row
of the table shows that a composite query is translated recursively.
This gives us a recipe for translating an arbitrary relational query
plan into a DBSP circuit.

The translation is fairly straightforward, but many operators
require the application of a distinct to produce sets. For example,
𝑎 ∪ 𝑏 = distinct (𝑎 + 𝑏), 𝑎 \ 𝑏 = distinct (𝑎 − 𝑏), (𝑎 × 𝑏) ((𝑥,𝑦)) =

𝑎[𝑥] ×𝑏 [𝑦]. Notice that the use of the distinct operator allows DBSP
to model the full relational algebra, including set difference (and
not just the positive fragment).

Prior work (e.g., Proposition 6.13 in [22]) has shown how some
invocations of distinct can be eliminated from query plans without
changing the query semantics; we will see that incremental versions
of distinct operators incur significant space costs.
Proposition 4.4: Let 𝑄 be one of the following Z-sets operators:
filtering 𝜎 , join ⊲⊳, or Cartesian product ×. Then we have ∀𝑖 ∈
Z[𝐼], ispositive(𝑖) ⇒ 𝑄 (distinct (𝑖)) = distinct (𝑄 (𝑖)).
Proposition 4.5: Let 𝑄 be one of the following Z-sets operators:
filtering 𝜎 , projection 𝜋 , map(𝑓)2, addition +, join ⊲⊳, or Cartesian
product×. Thenwe have ispositive(𝑖) ⇒ distinct (𝑄 (distinct (𝑖))) =
distinct (𝑄 (𝑖)).

These properties allow us to “consolidate” distinct operators by
performing one distinct at the end of a chain of computations.

4.3 Incremental view maintenance
Let us consider a relational query 𝑄 defining a view 𝑉 . To create
a circuit that maintains incrementally 𝑉 we apply the following
mechanical steps:
Algorithm 4.6 (incremental view maintenance):
(1) Translate 𝑄 into a circuit using the rules in Table 1.
(2) Apply distinct elimination rules (4.4, 4.5) until convergence3.
(3) Lift the whole circuit, by applying Proposition 2.4, converting it

to a circuit operating on streams.
(4) Incrementalize the whole circuit “surrounding” it with I and D.
(5) Apply the chain rule from Proposition 3.2 recursively on the

query structure to obtain an incremental implementation.
This algorithm is deterministic and its running time is propor-

tional to the number of operators in the query. Step (2) generates
an equivalent circuit, with possibly fewer distinct operators. Step
(3) yields a circuit that consumes a stream of complete database
snapshots and outputs a stream of complete view snapshots. Step

2Technically, map (applying a user-defined function to each row) is not relational.
3The order in which the rules are applied does not matter, since the algorithm is
confluent: it always produces the same final result.

Operation SQL example DBSP circuit Details

Composition
SELECT DISTINCT ... FROM

(SELECT ... FROM ...) I 𝐶𝐼 𝐶𝑂 O
𝐶𝐼 circuit for inner query,
𝐶𝑂 circuit for outer query.

Union

(SELECT * FROM I1)

UNION

(SELECT * FROM I2)

I1

I2

+ distinct O
distinct eliminates duplicates. An implemen-
tation of UNION ALL does not need the
distinct.

Projection
SELECT DISTINCT I.c

FROM I I 𝜋 distinct O
𝜋 (𝑖) [𝑦] def

=
∑︁

𝑥∈𝑖,𝑥 |𝑐=𝑦 𝑖 [𝑥]
𝑥 |𝑐 is projection on column 𝑐 of the tuple 𝑥
𝜋 is linear; ispositive(𝜋)

Filtering
SELECT * FROM I

WHERE p(I.c) I 𝜎𝑃 O
𝜎𝑃 (𝑚) [𝑥] def

=

{︃
𝑚 [𝑥] if 𝑃 (𝑥)
0 otherwise

𝑃 : 𝐴→ B is a predicate.
𝜎𝑃 is linear; ispositive(𝜎𝑃)

Cartesian
product

SELECT I1.*, I2.*

FROM I1, I2

I1

I2

× O (𝑎 × 𝑏) ((𝑥, 𝑦)) def
= 𝑎 [𝑥] × 𝑏 [𝑦].

× is bilinear, ispositive(×)

Equi-join

SELECT I1.*, I2.*

FROM I1 JOIN I2

ON I1.c1 = I2.c2

I1

I2

⊲⊳𝑐1=𝑐2 O
(𝑎 ⊲⊳ 𝑏) ((𝑥, 𝑦)) def

= 𝑎 [𝑥] × 𝑏 [𝑦]
if 𝑥 |𝑐1 = 𝑦 |𝑐2.
⊲⊳ is bilinear, ispositive(⊲⊳)

Intersection

(SELECT * FROM I1)

INTERSECT

(SELECT * FROM I2)

I1

I2

⊲⊳ O Special case of equi-join when both relations
have the same schema.

Difference

SELECT * FROM I1

EXCEPT

SELECT * FROM I2

I1

I2 −
+ distinct O distinct removes elements with negative

weights from the result.

Table 1: Implementation of SQL relational set operators in DBSP. Each query assumes that inputs I, I1, I2, are sets and it
produces output sets.

(4) yields a circuit that consumes a stream of database changes and
outputs a stream of view changes; however, the internal operation of
the circuit is non-incremental, as it rebuilds the complete database
using integration operators. Step (5) incrementalizes the circuit by
replacing each primitive operator with its incremental version.

Most of the operators that appear in the circuits in Table 1 are
linear, and thus have very efficient incremental versions (we dis-
cuss complexity in §4.4). A notable exception is distinct. The next
proposition shows that the incremental version of distinct is also
efficient, and it can be computed by doing work proportional to the
size of the input change:
Proposition 4.7: The following circuit implements (↑distinct)Δ:

Δ𝑑 (↑distinct)Δ Δ𝑜 ≅

Δ𝑑 I 𝑧−1

↑𝐻 Δ𝑜

𝑖

where 𝐻 : Z[𝐴] × Z[𝐴] → Z[𝐴] is defined as:

𝐻 (𝑖, 𝑑) [𝑥] def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if 𝑖 [𝑥] > 0 and (𝑖 + 𝑑) [𝑥] ≤ 0
1 if 𝑖 [𝑥] ≤ 0 and (𝑖 + 𝑑) [𝑥] > 0
0 otherwise

Here is the intuition why distinct is efficiently incrementalizable:
the only elements that can appear in the output of (↑distinct)Δ
must have changed in the input. So the size of the output change
cannot be bigger than the size of the input change. In the diagram
above, 𝑖 is the previous version of the integral of all changes, i.e.,
the full Z-set whose distinct value is being computed. The function
𝐻 detects whether the weight of an element in 𝑖 is changing sign
(positive to negative or vice-versa) when adding a new delta 𝑑 .

4.4 Complexity of incremental circuits
Incremental circuits are efficient. We evaluate the cost of a circuit
while processing the 𝑡-th input change. Even if𝑄 is a pure function,
𝑄Δ is actually a streaming system, with internal state. This state is
stored entirely in the delay operators 𝑧−1, some of which appear in

I and D operators. The result produced by 𝑄Δ on the 𝑡-th input
depends in general not only on the new 𝑡-th input, but also on all
prior inputs it has received.

We argue that each operator in the incremental version of a
circuit is efficient in terms of work and space. Wemake the standard
IVM assumption that the input changes of each operator are small:
|Δ𝐷𝐵 [𝑡] | ≪ |𝐷𝐵 [𝑡] | = | (I(Δ𝐷𝐵)) [𝑡] |.

An unoptimized incremental operator𝑄Δ = D ◦𝑄 ◦I evaluates
query𝑄 on the whole database 𝐷𝐵, the integral of the input stream:
𝐷𝐵 = I(Δ𝐷𝐵); hence its time complexity is the same as that of the
non-incremental evaluation of 𝑄 . In addition, each of the I and D
operators uses 𝑂 (|𝐷𝐵 [𝑡] |) memory.

Step (5) of the incrementalization algorithm applies the opti-
mizations described in §3; these reduce the time complexity of
each operator to be a function of 𝑂 (|Δ𝐷𝐵 [𝑡] |). For example, Theo-
rem 3.3, allows evaluating 𝑆Δ, where 𝑆 is a linear operator, in time
𝑂 (|Δ𝐷𝐵 [𝑡] |). The I operator can also be evaluated in𝑂 (|Δ𝐷𝐵 [𝑡] |)
time, because all values that appear in the output of I(Δ𝐷𝐵) [𝑡]
must be present in current input change Δ𝐷𝐵 [𝑡]. Similarly, while
the distinct operator is not linear, (↑distinct)Δ can also be evaluated
in 𝑂 (|Δ𝐷𝐵 [𝑡] |) according to Proposition 4.7. Bilinear operators,
including join, can be evaluated in time 𝑂 (|𝐷𝐵 [𝑡] | × |Δ𝐷𝐵 [𝑡] |),
which is a factor of |𝐷𝐵 [𝑡]/Δ𝐷𝐵 [𝑡] | better than full re-evaluation.

The space complexity of linear operators is 0 (zero), since they
store no data persistently. The space complexity of operators such
as (↑distinct)Δ, (↑ ⊲⊳)Δ, I, andD is𝑂 (|𝐷𝐵 [𝑡] |). They need to store
their input or output relations in full.

4.4.1 IVM query plans and optimality. Let us look again at what we
achieved using Algorithm 4.6. A relational algebra query can be im-
plemented by multiple plans, each with a different data-dependent
cost4. The input of Algorithm 4.6 is a (relational), non-incremental
query plan, produced by a query planner. The algorithm produces
an incremental plan that is “similar” to the input plan.

Standard query planners use cost-based heuristics and data sta-
tistics to optimize plans. A generic IVM planner does not have
this luxury, since the plan must be generated before any data has
been fed to the database. Nevertheless, all standard query optimiza-
tion techniques, perhaps based on historical statistics, can be used
to generate the query plan that is supplied to Algorithm 4.6. The
question of optimality in the context of IVM plan is a much more
difficult topic than optimization of ad-hoc queries, since the chosen
IVM plan will execute for all future database updates.

Moreover, since incremental computations maintain internal
state, it follows that incremental plans cannot be simply changed
in-flight, like we can change ad-hoc queries based on current data
statistics: deploying a new plan requires in general constructing its
internal state, which is produced by entire history of prior updates.
Fortunately, there is a trivial, but somewhat expensive, recipe for
installing a new incremental plan: feed the entire current state of
the database, as one big change.

4.5 Relational Query Example
We apply the IVM algorithm 4.6 to a concrete relational SQL query:

CREATE VIEW v AS

4The optimal plan depends not only on the query, but also on the data.

SELECT DISTINCT a . x , b . y FROM (
SELECT t 1 . x , t 1 . i d FROM t1 WHERE t 1 . a > 2

) a JOIN (
SELECT t 2 . id , t 2 . y FROM t2 WHERE t 2 . s > 5

) b ON a . i d = b . i d

Step 1: Create a DBSP circuit to represent this query using the
translation rules from Table 1; notice that this circuit is essentially
a dataflow implementation of the query. (Notice that the query asks
for SELECT DISTINCT, so there is a distinct operator after 𝜎):
t1 𝜎𝑎>2 distinct 𝜋𝑥,𝑖𝑑 distinct

t2 𝜎𝑠>5 distinct 𝜋𝑦,𝑖𝑑 distinct

⊲⊳𝑖𝑑=𝑖𝑑 𝜋𝑥,𝑦 distinct V

Step 2: apply the rules to eliminate distinct operators. First from
Proposition 4.5:
t1 𝜎𝑎>2 𝜋𝑥,𝑖𝑑 distinct

t2 𝜎𝑠>5 𝜋𝑦,𝑖𝑑 distinct

⊲⊳𝑖𝑑=𝑖𝑑 𝜋𝑥,𝑦 distinct V

The rule from Proposition 4.4 gives (from now on we omit the
subscripts to save space):
t1 𝜎 𝜋

t2 𝜎 𝜋

⊲⊳ distinct 𝜋 distinct V

And again 4.5:
t1 𝜎 𝜋

t2 𝜎 𝜋

⊲⊳ 𝜋 distinct V

At this point no more distinct elimination rules can be applied.
Step 3: we lift the circuit using distributivity of composition over

lifting (Proposition 2.4); we obtain a circuit that computes over
streams, i.e., for each new input pair of relations t1 and t2 it will
produce an output view V:
t1 ↑𝜎 ↑𝜋

t2 ↑𝜎 ↑𝜋

↑ ⊲⊳ ↑𝜋 ↑distinct V

Step 4: incrementalize circuit, obtaining a circuit that computes
over changes; this circuit receives changes to relations t1 and t2
and for each such change it produces the corresponding change in
the output view V:
Δt1 I ↑𝜎 ↑𝜋

Δt2 I ↑𝜎 ↑𝜋

↑ ⊲⊳ ↑𝜋 ↑distinct D ΔV

Step 5: apply the chain rule to rewrite the circuit as a composition
of incremental operators;
Δt1 (↑𝜎)Δ (↑𝜋)Δ

Δt2 (↑𝜎)Δ (↑𝜋)Δ
(↑ ⊲⊳)Δ (↑𝜋)Δ (↑distinct)Δ ΔV

Use the linearity of 𝜎 and 𝜋 to simplify this circuit (notice that
all linear operators no longer have a ·Δ):

Δt1 ↑𝜎 ↑𝜋

Δt2 ↑𝜎 ↑𝜋

(↑ ⊲⊳)Δ ↑𝜋 (↑distinct)Δ ΔV

Finally, replace the incremental join using the formula for bilin-
ear operators (Theorem 3.4), and the incremental distinct (Proposi-
tion 4.7), obtaining the following circuit:
Δt1 ↑𝜎 ↑𝜋

Δt2 ↑𝜎 ↑𝜋

I

I 𝑧−1

↑ ⊲⊳

↑ ⊲⊳

+ ↑𝜋 I 𝑧−1

↑𝐻 ΔV

Notice that the resulting circuit contains three integration oper-
ations: two from the join, and one from the distinct. It also contains
two join operators. However, the work performed by each operator
for each new input is proportional to the size of the change.

5 RECURSIVE QUERIES
Recursive queries are very useful in a many applications. For ex-
ample, graph algorithms such as graph reachability or transitive
closure are naturally expressed using recursive queries.

We introduce two simple DBSP stream operators that are used
for expressing recursive query evaluation. These operators allow us
to build circuits implementing looping constructs, which are used
to iterate computations until a fixed-point is reached.
Definition 5.1: We say that a stream 𝑠 ∈ S𝐴 is zero almost-
everywhere if it has a finite number of non-zero values, i.e., there
exists a time 𝑡0 ∈ N s.t. ∀𝑡 ≥ 𝑡0 .𝑠 [𝑡] = 0. Denote the set of streams
that are zero almost everywhere by S𝐴 ⊂ S𝐴 .

Stream introduction. The delta function (named from the Dirac
delta function) 𝛿0 : 𝐴 → S𝐴 produces a stream from a scalar value:

𝛿0 (𝑣) [𝑡]
def
=

{︃
𝑣 if 𝑡 = 0
0𝐴 otherwise

For example, 𝛿0 (5) is the stream [5 0 0 0 0 · · ·].

Stream elimination. We define the function
∫

: S𝐴 → 𝐴, over
streams that are zero almost everywhere, as

∫
(𝑠) def

=
∑︁
𝑡 ≥0 𝑠 [𝑡].

∫
is closely related to I; if I is the indefinite (discrete) integral,

∫
is

the definite (discrete) integral on the interval 0 −∞. For example,∫
([1 2 3 0 0 · · ·]) = 6.
For many classes of queries (including relational and Datalog

queries given below) the
∫
operator can be “approximated” without

loss of precision by integrating until the first 0 value encountered.
Proposition 5.2: 𝛿0 and

∫
are LTI.

Nested time domains. So far we have used a tacit assumption
that “time” is common for all streams in a program. For example,
when we add two streams, we assume that they use the same “clock”
for the time dimension. However, the 𝛿0 operator creates a stream
with a “new”, independent time dimension. We require well-formed
circuits to “insulate” such nested time domains by “bracketing” them
between a 𝛿0 and an

∫
operator:

𝑖 𝛿0 𝑄
∫

𝑜

In this circuit the arrows with double heads denote stream values,

while the simple arrow denote scalar values5. 𝑄 is a streaming
operator, but the entire circuit is a scalar function.

Algorithm 5.3 below, which translates recursive queries to DBSP
circuits, always produces well-formed circuits.

5.1 Implementing recursive queries
We describe the implementation of recursive queries in DBSP for
stratified Datalog. In general, a recursive Datalog program de-
fines a set of mutually recursive relations 𝑂1, ..,𝑂𝑛 as an equation
(𝑂1, ..,𝑂𝑛) = 𝑅(𝐼1, .., 𝐼𝑚,𝑂1, ..,𝑂𝑛), where 𝐼1, .., 𝐼𝑚 are input rela-
tions and 𝑅 is a relational (non-recursive) query.

We describe the algorithm for the simpler case of a single-input,
single-output query6. The input of our algorithm is a Datalog query
of the form𝑂 = 𝑅(𝐼 ,𝑂), where𝑅 is a relational, non-recursive query,
producing a set as a result, but whose output 𝑂 is also an input.
The output of the algorithm is a DBSP circuit which evaluates this
recursive query producing output 𝑂 when given the input 𝐼 . Here
we build a non-incremental circuit, which evaluates the Datalog
query; in §6 we derive the incremental version of this circuit.
Algorithm 5.3 (recursive queries):
(1) Implement the non-recursive relational query 𝑅 as described in

§4 and Table 1; this produces an acyclic circuit whose inputs and
outputs are a Z-sets:

I

O

𝑅 O

(2) Lift this circuit to operate on streams:

I

O

↑𝑅 O

We construct ↑𝑅 by lifting each operator of the circuit individu-
ally according to Proposition 2.4.

(3) Build a cycle, connecting the output to the corresponding recur-
sive input via a delay:

I ↑𝑅 O

𝑧−1

(4) “Bracket” the circuit in I and D nodes, and then in 𝛿0 and
∫
:

I 𝛿0 I ↑𝑅 D
∫

O

𝑧−1

We argue that the cycle inside this circuit computes iteratively
the fixed point of 𝑅. The D operator yields the set of new Datalog
facts (changes) computed by each iteration of the loop. When the
set of new facts becomes empty, the fixed point has been reached:
Theorem 5.4 (Recursion correctness): If isset(I), the output of the
circuit above is the relation O as defined by the Datalog semantics
of given program 𝑅 as a function of the input relation I.

Note that if the query 𝑅 computes over unbounded data domains
(e.g., using integers with arithmetic), this construction does not
guarantee that at runtime a fixed point is reached. But if a program

5We only use this convention in this diagram; in general the type of an arrow can be
inferred from the type of its source node.
6The general case in the companion technical report [12] is only slightly more involved.

does converge, the above construction will find the least fixed point.
In fact, this circuit implements the standard naïve evaluation

algorithm (e.g., see Algorithm 1 in [21]). Notice that the inner part
of the circuit is the incremental form of another circuit, since it is
sandwiched between I and D operators. Using the cycle rule of
Proposition 3.2 we can rewrite this circuit as:

I 𝛿0 (↑𝑅)Δ
∫

O

𝑧−1
(5.1)

This circuit implements semi-naïve evaluation (Algorithm 2
from [21]). We have just proven the correctness of semi-naïve eval-
uation as an immediate consequence of the cycle rule!

6 INCREMENTAL RECURSIVE PROGRAMS
In §2–4 we showed how to incrementalize a relational query by
compiling it into a circuit, lifting the circuit to compute on streams,
and applying the ·Δ operator. In §5 we showed how to compile a
recursive query into a circuit that employs incremental computation
internally (using semi-naïve evaluation), to compute the fixed point.
Here we combine these results to construct a circuit that evaluates
a recursive query incrementally. The circuit receives a stream of
updates to input relations, and for every update recomputes the
fixed point. To do this incrementally, it preserves the stream of
changes to recursive relations produced by the iterative fixed point
computation, and adjusts this stream to account for the modified
inputs. Thus, every element of the input stream yields a stream of
adjustments to the fixed point computation, using nested streams.

Nested streams, or streams of streams, SS𝐴
= N → (N → 𝐴),

are well defined, since streams form an abelian group. Equivalently,
a nested stream is a value in N × N → 𝐴, i.e., a matrix with an
infinite number of rows, indexed by two-dimensional time (𝑡0, 𝑡1).
where each row is a stream. Please refer to our companion report
for example computations on nested streams [12].

Lifting a stream operator 𝑆 : S𝐴 → S𝐵 yields an operator over
nested streams ↑𝑆 : SS𝐴

→ SS𝐵
, such that (↑𝑆) (𝑠) = 𝑆 ◦ 𝑠 , or,

pointwise: (↑𝑆 (𝑠)) [𝑡0] [𝑡1] = 𝑆 (𝑠 [𝑡0]) [𝑡1],∀𝑡0, 𝑡1 ∈ N. In particular,
a scalar function 𝑓 : 𝐴 → 𝐵 can be lifted twice to produce an
operator between streams of streams: ↑↑𝑓 : SS𝐴

→ SS𝐵
.

To define recursive nested queries, we need a slightly different
definition of strictness. If we think of a nested stream 𝐹 : SS𝐴

→
SS𝐵

as a function of timestamps (𝑖, 𝑗), then the prior definition of
strictness corresponds to strictness in the first dimension 𝑖 , which
we extend here to allow 𝐹 to be strict in its second dimension
𝑗 : for any 𝑠, 𝑠 ′ ∈ SS𝐴

and all times 𝑡 ∈ N, ∀𝑖, 𝑗 < 𝑡 . 𝑠 [𝑖] [𝑗] =

𝑠 ′[𝑖] [𝑗] implies 𝐹 (𝑠) [𝑖] [𝑡] = 𝐹 (𝑠 ′) [𝑖] [𝑡]. Proposition 2.9 holds for
this extended notion of strictness, i.e., the fixed point operator
fix𝛼.𝐹 (𝛼) is well defined for a strict operator 𝐹 .
Proposition 6.1: The operator ↑𝑧−1 : SS𝐴

→ SS𝐴
is strict (in its

second dimension).
The operator 𝑧−1 on nested streams delays “rows” of the matrix,

while ↑𝑧−1 delays “columns”. The I operator on SS𝐴
operates on

rows of the matrix, treating each row as a single value. Lifting a
stream operator computing on S𝐴 , such as I : S𝐴 → S𝐴 , also
produces an operator on nested streams, but this time computing
on the columns of the matrix ↑I : SS𝐴

→ SS𝐴
.

Proposition 6.2 (Lifting cycles): For a binary, causal 𝑇 we have:
↑(_𝑠.fix𝛼.𝑇 (𝑠, 𝑧−1 (𝛼))) = _𝑠.fix𝛼.(↑𝑇) (𝑠, (↑𝑧−1) (𝛼)) i.e., lifting a
circuit containing a “cycle” can be accomplished by lifting all oper-
ators independently, including the 𝑧−1 back-edge.

This means that lifting a DBSP stream operator can be expressed
within DBSP itself. For example, we have:

𝑖 ↑I 𝑜 ≅

𝑖 + 𝑜

↑𝑧−1

This proposition gives the ability to lift entire circuits, including
circuits computing on streams and having feedback edges, which
are well-defined, due to Proposition 6.1. With this machinery we
can now apply Algorithm 4.6 to arbitrary circuits, even circuits
built for recursively-defined relations.
Step 1: Start with the “semi-naive” circuit (5.1):

I 𝛿0 (↑𝑅)Δ
∫

O

𝑧−1

Step 2: nothing to do (for distinct).
Steps 3 and 4: Lift the circuit (using 6.2) and incrementalize:

ΔI I ↑𝛿0 ↑(↑𝑅)Δ ↑
∫

D ΔO

↑𝑧−1

Step 5: apply the chain rule and linearity of ↑𝛿0 and ↑
∫
:

ΔI ↑𝛿0 (↑(↑𝑅)Δ)Δ ↑
∫

ΔO

↑𝑧−1
(6.1)

This is the incremental version of an arbitrary recursive query.
An example for a transitive closure query is in our report [12].

6.1 Cost of incremental recursive queries
Time complexity. The time complexity of an incremental recur-

sive query can be estimated as a product of the number of fixed
point iterations and the complexity of each iteration. The incremen-
talized circuit (6.1) never performs more iterations than the non-
incremental circuit (5.1): once the non-incremental circuit reaches
the fixed point, its output is constant, and the derivative of corre-
sponding value in the incrementalized circuit becomes 0.

Moreover, the work performed by each operator in the incre-
mental circuit is asymptotically less than the non-incremental one.
A detailed analysis can be found in our companion report [12].

Space complexity. Integration (I) and differentiation (D) of a
stream Δ𝑠 ∈ SS𝐴

use memory proportional to
∑︁
𝑡2

∑︁
𝑡1 |𝑠 [𝑡1] [𝑡2] |,

i.e., the total size of changes aggregated over columns of the matrix.
The unoptimized circuit integrates and differentiates respectively
inputs and outputs of the recursive program fragment. As we move
I and D inside the circuit using the chain rule, we additionally
store changes to intermediate streams. Effectively we cache results
of fixed point iterations from earlier timestamps to update them
efficiently as new input changes arrive. Notice that space usage
is proportional to the number of iterations of the inner loop that
computes the fixed-point. Fortunately, many recursive algorithms

converge in a relatively small number of steps (for example, transi-
tive closure requires a number of steps log(graph diameter).

7 DBSP AND RICHER QUERY LANGUAGES
The DBSP language can express a richer class of streaming compu-
tations (both incremental and non-incremental) than those covered
so far. In this section we enumerate several important classes of
queries that can be implemented in DBSP, and thus can be incre-
mentalized using Algorithm 4.6.

7.1 Multisets and bags
In §4 we have shown how to implement the relational algebra on
sets. Some SQL queries however producemultisets, e.g., UNION ALL.
Since Z-sets generalize multisets and bags, it is trivial to implement
query operators on multisets, by just omitting distinct operator
invocations. For example, SQL UNION is Z-set addition followed
by distinct, whereas UNION ALL is just Z-set addition. Indeed, the
SQL to DBSP compiler mentioned in §8 handles full standard SQL,
including all multiset queries.

7.2 Aggregation
Aggregation in SQL applies a function 𝑎 to a set of values of type 𝐴
producing a “scalar” result with some result type 𝐵: 𝑎 : 2𝐴 → 𝐵. In
DBSP an aggregation function has a signature 𝑎 : Z[𝐴] → 𝐵.

The SQL COUNT aggregation function is implemented on Z-sets
by 𝑎COUNT : Z[𝐴] → Z, which computes a sum of all the element
weights: 𝑎COUNT (𝑠) =

∑︁
𝑥 ∈𝑠 𝑠 [𝑥]. The SQL SUM aggregation function

is implemented on Z-sets by 𝑎SUM : Z[R] → R which performs a
weighted sum of all (real) values: 𝑎SUM (𝑠) =

∑︁
𝑥 ∈𝑠 𝑥 × 𝑠 [𝑥]. Both

these implementations work correctly for sets and multisets.
With this definition the aggregation functions 𝑎COUNT and 𝑎SUM

are in fact linear transformations between the group Z[𝐴] and the
result group (Z, and R respectively).

If the output of the DBSP circuit is allowed to be such a “scalar”
value, then aggregation with a linear function is simply function ap-
plication, and thus linear. However, in general, composing multiple
queries requires the result of an aggregation to be a singleton Z-set
(containing a single value), and not a scalar value. In this case the
aggregation function is implemented in DBSP as the composition
of the actual aggregation and the makeset : 𝐴 → Z[𝐴] function,
which converts a scalar value of type𝐴 to a singleton Z-set, defined
as follows: makeset(𝑥) def

= {𝑥 ↦→ 1}.
In conclusion, the following SQL query: SELECT SUM(c) FROM I

is implemented as the following circuit:7

I 𝜋C 𝑎SUM makeset O

The lifted incremental version of this circuit is interesting: since
𝜋 and 𝑎SUM are linear, they are equivalent to their own incremental
versions. Although (↑makeset)Δ = D ◦ ↑makeset ◦ I cannot be
simplified, it is nevertheless efficient, doing only O(1) work per
invocation, since its input and output are singleton values.

Finally, some aggregate functions, such as MIN, are not linear:
for handling deletions they need to track the full set. One way to
implement in DBSP the lifted incremental version of such aggregate

7The actual SQL SUM aggregate is even more complicated, because it needs to skip
NULLs, and it returns NULL for an empty input set; this can be implemented in DBSP.

functions is by “brute force”, using the formula (↑𝑎MIN)Δ = D ◦
↑𝑎MIN◦I. Such an implementations performs work𝑂 (|𝐷𝐵 |) at each
invocation. However, schemes such as Reactive Aggregator [47] can
be implemented as custom DBSP operators to bring the amortized
cost per update to 𝑂 (log |𝐷𝐵 |). This approach is similar to the
customized implementation of the distinct operator, and it is another
facet of the modularity of DBSP, which allows optimized operator
implementations to be mixed and matched.

7.3 Grouping; indexed relations
Let 𝐾 be a set of “key values.” Consider the mathematical structure
of finite maps from 𝐾 to Z-sets: 𝐾 → Z[𝐴] = Z[𝐴] [𝐾]. We call
values 𝑖 of this structure indexed Z-sets: for each key 𝑘 ∈ 𝐾 , 𝑖 [𝑘]
is a Z-set. Because the codomain Z[𝐴] is an abelian group, this
structure is itself an abelian group.

We use this structure to implement the SQL GROUP BY operator in
DBSP. Consider a partitioning function 𝑝 : 𝐴 → 𝐾 that assigns
a key to any value in 𝐴. We define the grouping function 𝐺𝑝 :
Z[𝐴] → Z[𝐴] [𝐾] as 𝐺𝑝 (𝑎) [𝑘]

def
=

∑︁
𝑥 ∈𝑎.𝑝 (𝑥)=𝑘 𝑎[𝑥] · 𝑥 (just map

each element of the input 𝑎 to the Z-set grouping corresponding to
its key). When applied to a Z-set 𝑎 this function returns a indexed Z-
set, where each element is a grouping:8 for each key 𝑘 a grouping
is a Z-set containing all elements of 𝑎 that map to 𝑘 (as in SQL,
groupings are multisets). Consider our example Z-set 𝑅 from §4,
and a key function 𝑝 (𝑠) that returns the first letter of the string 𝑠 .
Then we have that𝐺𝑝 (𝑅) = {j ↦→ {joe ↦→ 1}, a ↦→ {anne ↦→ −1}},
i.e., grouping with this key function produces an indexed Z-set with
two groupings, each of which contains a Z-set with one element.

The grouping function 𝐺𝑝 is linear for any key function 𝑝! It
follows that the group-by implementation in DBSP is automati-
cally incremental: given some changes to the input relation we can
apply the partitioning function to each row changed in the input
separately to compute how each grouping changes.

Notice that, unlike SQL, DBSP can express naturally computa-
tions on indexed Z-sets, they are just an instance of a group struc-
ture. In DBSP one does not need to follow grouping by aggregation,
and DBSP can represent nested groupings of arbitrary depth. Our
definition of incremental computation is only concerned with in-
crementality in the outermost structures. We leave it to future work
to explore an appropriate definition of incremental computation
on the inner relations.

7.4 GROUP BY-AGGREGATE, flatmap
Grouping in SQL is almost always followed by aggregation. Let us
consider an aggregation function 𝑎 : (𝐾×Z[𝐴]) → 𝐵 that produces
values in some group 𝐵, and an indexed relation of type Z[𝐴] [𝐾],
as defined above in §7.3. The nested relation aggregation operator
𝐴𝑔𝑔𝑎 : Z[𝐴] [𝐾] → 𝐵 applies 𝑎 to the contents of each grouping
independently and adds the results: 𝐴𝑔𝑔𝑎 (𝑔)

def
=

∑︁
𝑘∈𝐾 𝑎(𝑘,𝑔[𝑘]).

To apply this to our example, let us compute the equivalent of
GROUP BY-COUNT; we use the following aggregation function 𝑐𝑜𝑢𝑛𝑡 :
𝐾 × Z[𝐴], 𝑐𝑜𝑢𝑛𝑡 (𝑘, 𝑠) = makeset((𝑘, 𝑎COUNT (𝑠))), using the Z-set
counting function 𝑎COUNT from §7.2; the notation (𝑎, 𝑏) is a pair
of values 𝑎 and 𝑏. Then we have 𝐴𝑔𝑔𝑐𝑜𝑢𝑛𝑡 (𝐺𝑝 (𝑅)) = {(j, 1) ↦→

8We use “group” for the algebraic structure and “grouping” for the result of GROUP BY.

1, (a,−1) ↦→ 1}.
A very useful operation on nested relations isflatmap (or UNNEST

in SQL), which is essentially the inverse of grouping, convert-
ing an indexed Z-set into a Z-set: flatmap : Z[𝐴] [𝐾] → Z[𝐴 ×
𝐾]. flatmap is in fact a particular instance of aggregation, using
the aggregation function 𝑎 : 𝐾 × Z[𝐴] → Z[𝐴 × 𝐾] defined
by 𝑎(𝑘, 𝑠) =

∑︁
𝑥 ∈𝑠 [𝑘] 𝑠 [𝑘] [𝑥] · (𝑘, 𝑥) . For our previous example,

flatmap(𝐺𝑝 (𝑅)) = {(j, joe) ↦→ 1, (a, anne) ↦→ −1}.

7.5 Streaming joins
Consider a binary query𝑇 (𝑠, 𝑡) = I(𝑠) ↑ ⊲⊳ 𝑡 . This is the relation-to-
stream join operator supported by streaming databases like Kafka’s
ksqlDB [31]. Stream 𝑠 carries changes to a relation, while 𝑡 carries
arbitrary data, e.g., logs or telemetry data points. 𝑇 discards values
from 𝑡 after matching them against the accumulated contents of
the relation I(𝑠).

Streaming Window queries. Streaming databases often organize
the contents of streams into windows, which store a subset of data
points with a predefined range of timestamps. In practice, window-
ing is usually based on physical timestamps attached to stream
values rather than logical (transaction) time as in the previous cir-
cuit. For instance, the CQL [9] query “SELECT * FROM events
[RANGE 1 hour]” returns all events received within the last hour.
The corresponding circuit (on the left) takes input stream 𝑠 ∈ SZ[𝐴]
and an additional input \ ∈ SR that carries the value of the current
time.

𝑠

\

𝐼 𝑊 𝑜
≅ 𝑠

\

+ 𝑊 𝑜

𝑧−1

where the window operator𝑊 prunes input Z-sets, only keeping
values with timestamps less than an hour behind \ [𝑡]. Assuming 𝑡𝑠 :
𝐴 → R returns the physical timestamp of a value,𝑊 is defined as
𝑊 (𝑣, \) [𝑡] def

= {𝑥 ∈ 𝑣 [𝑡] .𝑡𝑠 (𝑥) ≥ \ [𝑡] − 1ℎ𝑟 }. Assuming \ increases
monotonically,𝑊 can be moved inside integration, resulting in the
circuit on the right, which uses bounded memory to compute a
window of an unbounded stream. This circuit is a building block
of a large family of window queries, including window joins and
window aggregation (e.g., SQL OVER queries).

7.6 Relational while queries
DBSP can express programs that go beyond Datalog: see the non-
monotonic semantics for Datalog¬ and Datalog¬¬[5]. We imple-
ment the following “while” program, where𝑄 is an arbitrary query:

x := i;

while (x changes)

x := Q(x);

The DBSP implementation of this program is:

𝑖 𝛿0 + ↑𝑄 D
∫

𝑥

𝑧−1

This circuit can be converted to a streaming circuit that computes
a stream of values 𝑖 by lifting it; it can be incrementalized using
Algorithm 4.6 to compute on changes of 𝑖:

Δ𝑖 ↑𝛿0 + (↑↑𝑄)Δ ↑D ↑
∫

Δ𝑥

↑𝑧−1

At runtime the execution of this circuit is not guaranteed to
terminate; however, if the circuit does terminate, it will produce
the correct output, i.e., the least fixpoint of 𝑄 that includes 𝑖 .

8 IMPLEMENTATION
The scope of this paper is the DBSP theory of IVM, so we only
briefly touch upon the implementation aspects. We defer a full
description and evaluation of the system to a future paper.

DBSP Rust library. We have built an implementation of DBSP as
part of an open-source project with an MIT license: https://github.
com/vmware/database-stream-processor. The implementation con-
sists of a Rust library and a runtime. The library provides APIs
for basic algebraic data types: such as groups, finite maps, Z-set,
indexed Z-set. A separate circuit construction API allows users to
create DBSP circuits by placing operator nodes (corresponding to
boxes in our diagrams) and connecting them with streams, which
correspond to the arrows in our diagrams. The library provides pre-
built generic operators for integration, differentiation, delay, nested
integration and differentiation, and a rich library of Z-set basic
incremental operators: corresponding to plus, negation, grouping,
joining, aggregation, distinct, flatmap, window aggregates, etc.

For iterative computations the library provides the 𝛿0 operator
and an operator that approximates

∫
by terminating iteration of

a loop at a user-specified condition (usually the condition is the
requirement for a zero to appear in a specified stream). The low
level library allows users to construct incremental circuits manually
by stitching together incremental versions of primitive operators.

The library supports data-parallel multicore evaluation of circuits
using a natural sharding strategy, and a variety of adapters for
external data sources (e.g., Kafka, CSV files, etc). The library can also
spill internal operator state to persistent storage. Benchmark results
(which are very promising) are available in the code repository and
will be discussed in future work.

SQL compiler. We have also built a SQL to DBSP compiler, which
translates standard SQL queries into DBSP circuits. The compiler im-
plements Algorithm 4.6, to generate a streaming version of any SQL
query. The compiler is open-source https://github.com/vmware/sql-
to-dbsp-compiler with an MIT license. The compiler front-end
parser and optimizer are based on the Apache Calcite [10] infras-
tructure. The project is mature enough to pass all 7 million SQL
Logic Tests [2]. The compiler handles all aspects of SQL, including
NULLs, ternary logic, grouping, aggregation, multiset queries, etc.
Currently correlated sub-queries and outer joins are essentially
converted to equivalent relational plans using multiple joins.

Formal verification. We have formalized and verified all the defi-
nitions, lemmas, propositions, theorems, and examples in this paper
using the Lean theorem prover; we make these proofs available
at [14]. The formalization builds on mathlib [37], which provides
support for groups and functions with finite support (modeling Z-
sets). We believe the simplicity of DBSP enabled completing these
proofs in relatively few lines of Lean code (5K) and keeping a close

https://github.com/vmware/database-stream-processor
https://github.com/vmware/database-stream-processor
https://github.com/vmware/sql-to-dbsp-compiler
https://github.com/vmware/sql-to-dbsp-compiler

correspondence between the paper proofs in [12] and Lean.

9 RELATEDWORK
Incremental view maintenance [15, 16, 24–26] is a much studied
problem in databases. A survey of results for Datalog queries is
present in [40]. The standard approach is as follows: given a query
𝑄 , discover a “delta query”, a “differential” version Δ𝑄 that satisfies
the equation:𝑄 (𝑑+Δ𝑑) = 𝑄 (𝑑)+Δ𝑄 (𝑑,Δ𝑑), and which can be used
to compute the change for a new input reusing the previous output.
DBToaster introduced recursive recursive IVM [6, 33], where the
incrementalization process is repeated for the delta query.

Many custom algorithms were published for various classes
of queries: e.g. [34] handles positive nested relational calculus.
DYN [28] and IDYN [29, 30] focus on acyclic conjunctive queries.
Instead of keeping the output view materialized they build data
structures that allow efficiently querying the output views. PAI
maps [4] are specially designed for queries with correlated aggrega-
tions. AJU [48] focuses on foreign-key joins. It is a matter of future
work to evaluate whether custom DBSP operators can match the
efficiency of systems specialized for narrow classes of queries.

DBSP is a bottom-up system, which always produces eagerly
the changes to the output views. Instead of maintaining the output
view entirely, DBSP proposes generating deltas as the output of the
computation (similar to the kSQL [31] EMIT CHANGES queries). The
idea that both inputs and outputs to an IVM system are streams
of changes seems trivial, but this is key to the symmetry of our
solution: both in our definition of IVM (3.1), and the fundamental
reason that the chain rule exists — the chain rule is the one that
makes our structural induction IVM algorithm possible.

Several IVM algorithms for Datalog-like languages use counting
based approaches [19, 41] that maintain the number of derivations
of each output fact: DRed [26] and its variants [8, 13, 35, 36, 46, 49],
the backward-forward algorithm and variants [27, 40, 41]. DBSP is
more general, and our incrementalization algorithm handles arbi-
trary recursive queries and generates more efficient plans for recur-
sive queries in the presence of arbitrary updates (especially dele-
tions, where competing approaches may over-delete). Interestingly,
the Z-sets weights in DBSP are related to the counting-number-of-
derivations approaches, but our use of the distinct operator shows
that precise counting is not necessary.

Picallo et al. [7] provide a general solution to IVM for rich lan-
guages. DBSP requires a group structure on the values operated
on; this assumption has two major practical benefits: it simplifies
the mathematics considerably (e.g., Picallo uses monoid actions to
model changes), and it provides a general, simple algorithm (4.6)
for incrementalizing arbitrary programs. The downside of DBSP
is that one has to find a suitable group structure (e.g., Z-sets for
sets) to “embed” the computation. Picallo’s notion of “derivative”
is not unique: they need creativity to choose the right derivative
definition, we need creativity to find the right group structure.

Finding a suitable group structure has proven easy for relations
(both [33] and [22] use Z-sets to uniformly model data and inser-
tions/deletions), but it is not obvious how to do it for other data
types, such as sorted collections, or tree-shaped collections (e.g.,
XML or JSON documents) [20]. An intriguing question is “what
other interesting group structures could this be applied to besides

Z-sets?” Papers such as [43] explore other possibilities, such as
matrix algebra, linear ML models, or conjunctive queries.

DBSP does not do anything special for triangle queries [32]. Are
there better algorithms for this case?

In §7 we have briefly mentioned that DBSP can easily model
window and stream database queries [1, 9]; it is an interesting
question whether there are CQL queries that cannot be expressed
in DBSP (we conjecture that there aren’t any).

Bonifati et al. [11] implemented a verified IVM algorithm for
a particular class of graph queries called Regular Datalog, with
an implementation machine-checked in the Coq proof assistant.
Their focus is on a particular algorithm and the approach does
not consider other SQL operators, general recursion, or custom
operators (although it is modular in the sense that it works on
any query by incrementalizing it recursively). Furthermore, for all
queries a deletion in the input change stream requires running the
non-incremental query to recover. We formally verify the theo-
rems in our paper, which are much broader in scope, but not our
implementations.

DBSP is also related to Differential Dataflow (DD) [39, 42] and
its theoretical foundations [3] (and recently [17, 38]). DD’s compu-
tational model is more powerful than DBSP, since it allows time
values to be part of an arbitrary lattice. In fact, DD is the only
other framework which we are aware of that can incremental-
ize recursive queries as efficiently as DBSP does. In contrast, our
model uses either “linear” times, or nested time dimensions via the
modular lifting transformer (↑). DBSP can express both incremen-
tal and non-incremental computations. Most importantly, DBSP
comes with Algorithm 4.6, a syntax-directed translation that can
convert any expressible query into an incremental version — in DD
users have to assemble incremental queries manually using incre-
mental operators. (materialize.com offers a product that automates
incrementalization for SQL queries based on DD. Differential Data-
log [45] does it for a Datalog dialect.) Unlike DD, DBSP is a modular
theory, which easily accommodates the addition of new operators:
as long as we can express a new operator as a DBSP circuit, we can
(1) define its incremental version, (2) apply the incrementalization
algorithm to obtain an efficient incremental implementation, and
(3) be confident that it composes with any other operators.

10 CONCLUSIONS
We have introduced DBSP, a model of computation based on infinite
streams over abelian groups. In this model streams are used for 3
purposes: (1) to model consecutive snapshots of a database, (2) to
model consecutive changes (deltas, or transactions) applied to a
database and changes of a maintained view, (3) to model consecutive
values of loop-carried variables in recursive computations.

We have defined an abstract notion of incremental computation
over streams, and defined the incrementalization operator ·Δ, which
transforms an arbitrary stream computation 𝑄 into its incremental
version 𝑄Δ. The incrementalization operator has some very nice
algebraic properties, which gave us a general algorithm for incre-
mentalizing many classes of complex queries, including arbitrary
recursive queries.

We believe that DBSP can form a solid foundation for a theory
and practice of streaming incremental computation.

REFERENCES
[1] [n.d.]. The Aurora Project. http://cs.brown.edu/research/aurora/. Last accessed

November 2022.
[2] [n.d.]. sqllogictest. https://www.sqlite.org/sqllogictest/doc/trunk/about.wiki.

Last accessed March 2023.
[3] Martín Abadi, Frank McSherry, and Gordon Plotkin. 2015. Foundations of Dif-

ferential Dataflow. In Foundations of Software Science and Computation Struc-
tures (FoSSaCS). London, UK. http://homepages.inf.ed.ac.uk/gdp/publications/
differentialweb.pdf

[4] Supun Abeysinghe, Qiyang He, and Tiark Rompf. 2022. Efficient Incremential-
ization of Correlated Nested Aggregate Queries Using Relative Partial Aggregate
Indexes (RPAI). In ACM SIGMOD International conference on Management of data
(SIGMOD) (Philadelphia, PA, USA). 136–149. https://doi.org/10.1145/3514221.
3517889

[5] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Addison-Wesley. http://webdam.inria.fr/Alice/

[6] Yanif Ahmad and Christoph Koch. 2009. DBToaster: A SQL Compiler for High-
Performance Delta Processing in Main-Memory Databases. Proc. VLDB Endow.
2, 2 (Aug. 2009), 1566–1569. https://doi.org/10.14778/1687553.1687592

[7] Mario Alvarez-Picallo, Alex Eyers-Taylor, Michael Peyton Jones, and C.-H. Luke
Ong. 2019. Fixing Incremental Computation. In European Symposium on Pro-
gramming Languages and Systems (ESOP). Prague, Czech Republic, 525–552.
https://link.springer.com/chapter/10.1007/978-3-030-17184-1_19

[8] Krzysztof R. Apt and Jean-Marc Pugin. 1987. Maintenance of Stratified Databases
Viewed as a Belief Revision System. In ACM SIGMOD International conference on
Management of data (SIGMOD). San Diego, California, 136–145. https://doi.org/
10.1145/28659.28674

[9] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2002. An Abstract Seman-
tics and Concrete Language for Continuous Queries over Streams and Relations.
Technical Report 2002-57. Stanford InfoLab. http://ilpubs.stanford.edu:8090/563/

[10] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In International Conference
on Management of Data (IDMD) (Houston, TX, USA). 221–230. https://doi.org/
10.1145/3183713.3190662

[11] Angela Bonifati, Stefania Dumbrava, and Emilio Jesús Gallego Arias. 2018. Certi-
fied Graph View Maintenance with Regular Datalog. Theory and Practice of Logic
Programming 18, 3-4 (2018), 372–389. https://doi.org/10.1017/S1471068418000224

[12] Mihai Budiu, Frank McSherry, Leonid Ryzhyk, and Val Tannen. 2022.
DBSP: A Language for Expressing Incremental View Maintenance for
Rich Query Languages. https://github.com/vmware/database-stream-
processor/blob/main/doc/spec.pdf.

[13] Stefano Ceri and Jennifer Widom. 1991. Deriving Production Rules for Incre-
mental View Maintenance. In International Conference of Very Large Data Bases
(VLDB). Barcelona, Spain, 577–589. http://www.vldb.org/conf/1991/P577.PDF

[14] Tej Chajed. 2022. DBSP formalization. https://github.com/tchajed/dbsp-theory
[15] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim.

1995. Optimizing Queries with Materialized Views. In International Conference
on Data Engineering (ICDE). 190–200.

[16] Rada Chirkova and Jun Yang. 2012. Materialized Views. Now Publishers Inc.,
Hanover, MA, USA.

[17] Zaheer Chothia, John Liagouris, Frank McSherry, and Timothy Roscoe. 2016.
Explaining Outputs in Modern Data Analytics. Proc. VLDB Endow. 9, 12 (Aug.
2016), 1137–1148. https://doi.org/10.14778/2994509.2994530

[18] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob
von Raumer. 2015. The Lean Theorem Prover. In International Conference on
Automated Deduction (CADE-25). Berlin, Germany.

[19] Hasanat M. Dewan, David Ohsie, Salvatore J. Stolfo, Ouri Wolfson, and Sushil Da
Silva. 1992. Incremental Database Rule Processing In PARADISER. J. Intell. Inf.
Syst. 1, 2 (1992), 177–209. https://doi.org/10.1007/BF00962282

[20] J. Nathan Foster, Ravi Konuru, Jerome Simeon, and Lionel Villard. 2008. An
Algebraic Approach to XQuery View Maintenance. In ACM SIGPLAN Workshop
on Programming Languages Technologies for XML. San Francisco, CA.

[21] Sergio Greco and Cristian Molinaro. 2015. Datalog and Logic Databases. Syn-
thesis Lectures on Data Management 7, 2 (2015), 1–169. https://doi.org/10.2200/
S00648ED1V01Y201505DTM041

[22] Todd J Green, Zachary G Ives, and Val Tannen. 2011. Reconcilable differences.
Theory of Computing Systems 49, 2 (2011), 460–488. https://web.cs.ucdavis.edu/
~green/papers/tocs11_differences.pdf

[23] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance
Semirings. In Symposium on Principles of Database Systems (PODS). Beijing,
China, 31–40. https://doi.org/10.1145/1265530.1265535

[24] Timothy Griffin and Leonid Libkin. 1995. Incremental Maintenance of Views
with Duplicates. In ACM SIGMOD International conference on Management of
data (SIGMOD) (San Jose, California, USA). 328–339. https://doi.org/10.1145/
223784.223849

[25] Ashish Gupta, Inderpal Singh Mumick, et al. 1995. Maintenance of materialized

views: Problems, techniques, and applications. IEEE Data Eng. Bull. 18, 2 (1995),
3–18.

[26] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. 1993. Maintain-
ing Views Incrementally. In ACM SIGMOD International Conference on Manage-
ment of Data. Washington, D.C., USA, 157–166. https://doi.org/10.1145/170035.
170066

[27] John V. Harrison and Suzanne W. Dietrich. 1992. Maintenance of Materialized
Views in a Deductive Database: An Update Propagation Approach. In Workshop
on Deductive Databases (Technical Report). Washington, D.C., 56–65.

[28] Muhammad Idris, Martin Ugarte, and Stijn Vansummeren. 2017. The Dynamic
Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates.
In ACM SIGMOD International conference on Management of data (SIGMOD)
(Chicago, Illinois, USA). 1259–1274. https://doi.org/10.1145/3035918.3064027

[29] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-
gang Lehner. 2018. Conjunctive Queries with Inequalities under Updates. Proc.
VLDB Endow. 11, 7 (mar 2018), 733–745. https://doi.org/10.14778/3192965.
3192966

[30] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-
gang Lehner. 2019. Efficient Query Processing for Dynamically Changing
Datasets. SIGMOD Rec. 48, 1 (November 2019), 33–40. https://doi.org/10.1145/
3371316.3371325

[31] Hojjat Jafarpour, Rohan Desai, and Damian Guy. 2019. KSQL: Streaming SQL
Engine for Apache Kafka. In International Conference on Extending Database
Technology (EDBT). Lisbon, Portugal, 524–533. http://openproceedings.org/2019/
conf/edbt/EDBT19_paper_329.pdf

[32] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2020.
Maintaining Triangle Queries under Updates. ACM Trans. Database Syst. 45, 3,
Article 11 (aug 2020), 46 pages. https://doi.org/10.1145/3396375

[33] Christoph Koch. 2010. Incremental Query Evaluation in a Ring of Databases. In
Symposium on Principles of Database Systems (PODS). Indianapolis, Indiana, USA,
87–98. https://doi.org/10.1145/1807085.1807100

[34] Christoph Koch, Daniel Lupei, and Val Tannen. 2016. Incremental View Main-
tenance For Collection Programming. In Symposium on Principles of Database
Systems (PODS). San Francisco, California, USA, 75–90. https://doi.org/10.1145/
2902251.2902286

[35] Jakub Kotowski, François Bry, and Simon Brodt. 2011. Reasoning as Axioms
Change - Incremental View Maintenance Reconsidered. InWeb Reasoning and
Rule Systems RR (Lecture Notes in Computer Science, Vol. 6902). Springer, Galway,
Ireland, 139–154. https://doi.org/10.1007/978-3-642-23580-1_11

[36] James J. Lu, Guido Moerkotte, Joachim Schü, and V. S. Subrahmanian. 1995.
Efficient Maintenance of Materialized Mediated Views. In ACM SIGMOD Interna-
tional conference on Management of data (SIGMOD). San Jose, California, 340–351.
https://doi.org/10.1145/223784.223850

[37] The mathlib Community. 2020. The Lean Mathematical Library. In Proceedings of
the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs
(New Orleans, LA, USA) (CPP 2020). Association for Computing Machinery, New
York, NY, USA, 367–381. https://doi.org/10.1145/3372885.3373824

[38] FrankMcSherry, Andrea Lattuada,Malte Schwarzkopf, and Timothy Roscoe. 2020.
Shared Arrangements: Practical Inter-Query Sharing for Streaming Dataflows.
Proc. VLDB Endow. 13, 10 (June 2020), 1793–1806. https://doi.org/10.14778/
3401960.3401974

[39] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.
Differential Dataflow. In Conference on Innovative Data Systems Research (CIDR).
Asilomar, CA, 12 pages. https://www.cidrdb.org/cidr2013/Papers/CIDR13_
Paper111.pdf

[40] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. 2019. Maintenance
of Datalog materialisations revisited. Artif. Intell. 269 (2019), 76–136. https:
//doi.org/10.1016/j.artint.2018.12.004

[41] Boris Motik, Yavor Nenov, Robert Edgar Felix Piro, and Ian Horrocks. 2015.
Incremental Update of Datalog Materialisation: the Backward/Forward Algo-
rithm. In Conference on Artificial Intelligence (AAAI). Austin, Texas, 1560–1568.
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9660

[42] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In ACM Symposium
on Operating Systems Principles (SOSP). Farminton, Pennsylvania, 439–455. https:
//doi.org/10.1145/2517349.2522738

[43] Milos Nikolic and Dan Olteanu. 2018. Incremental ViewMaintenance with Triple
Lock Factorization Benefits. In International Conference on Management of Data
(ICMD) (Houston, TX, USA). 365–380. https://doi.org/10.1145/3183713.3183758

[44] L. R. Rabiner and B. Gold (Eds.). 1975. Theory and Application of Digital Signal
Processing. Prentice-Hall.

[45] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. In Datalog 2.0.
Philadelphia, PA, 12 pages. http://budiu.info/work/ddlog.pdf

[46] Martin Staudt and Matthias Jarke. 1996. Incremental Maintenance of Externally
Materialized Views. In International Conference of Very Large Data Bases (VLDB).
Mumbai (Bombay), India, 75–86. http://www.vldb.org/conf/1996/P075.PDF

[47] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. 2015.
General Incremental Sliding-Window Aggregation. Proc. VLDB Endow. 8, 7

http://cs.brown.edu/research/aurora/
https://www.sqlite.org/sqllogictest/doc/trunk/about.wiki
http://homepages.inf.ed.ac.uk/gdp/publications/differentialweb.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/differentialweb.pdf
https://doi.org/10.1145/3514221.3517889
https://doi.org/10.1145/3514221.3517889
http://webdam.inria.fr/Alice/
https://doi.org/10.14778/1687553.1687592
https://link.springer.com/chapter/10.1007/978-3-030-17184-1_19
https://doi.org/10.1145/28659.28674
https://doi.org/10.1145/28659.28674
http://ilpubs.stanford.edu:8090/563/
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1017/S1471068418000224
http://www.vldb.org/conf/1991/P577.PDF
https://github.com/tchajed/dbsp-theory
https://doi.org/10.14778/2994509.2994530
https://doi.org/10.1007/BF00962282
https://doi.org/10.2200/S00648ED1V01Y201505DTM041
https://doi.org/10.2200/S00648ED1V01Y201505DTM041
https://web.cs.ucdavis.edu/~green/papers/tocs11_differences.pdf
https://web.cs.ucdavis.edu/~green/papers/tocs11_differences.pdf
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/223784.223849
https://doi.org/10.1145/223784.223849
https://doi.org/10.1145/170035.170066
https://doi.org/10.1145/170035.170066
https://doi.org/10.1145/3035918.3064027
https://doi.org/10.14778/3192965.3192966
https://doi.org/10.14778/3192965.3192966
https://doi.org/10.1145/3371316.3371325
https://doi.org/10.1145/3371316.3371325
http://openproceedings.org/2019/conf/edbt/EDBT19_paper_329.pdf
http://openproceedings.org/2019/conf/edbt/EDBT19_paper_329.pdf
https://doi.org/10.1145/3396375
https://doi.org/10.1145/1807085.1807100
https://doi.org/10.1145/2902251.2902286
https://doi.org/10.1145/2902251.2902286
https://doi.org/10.1007/978-3-642-23580-1_11
https://doi.org/10.1145/223784.223850
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.14778/3401960.3401974
https://doi.org/10.14778/3401960.3401974
https://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://doi.org/10.1016/j.artint.2018.12.004
https://doi.org/10.1016/j.artint.2018.12.004
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9660
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/3183713.3183758
http://budiu.info/work/ddlog.pdf
http://www.vldb.org/conf/1996/P075.PDF

(February 2015), 702–713. https://doi.org/10.14778/2752939.2752940
[48] Qichen Wang and Ke Yi. 2020. Maintaining Acyclic Foreign-Key Joins under

Updates. In ACM SIGMOD International conference on Management of data (SIG-
MOD). Portland, OR, USA, 1225–1239. https://doi.org/10.1145/3318464.3380586

[49] Ouri Wolfson, Hasanat M. Dewan, Salvatore J. Stolfo, and Yechiam Yemini. 1991.
Incremental Evaluation of Rules and its Relationship to Parallelism. In ACM
SIGMOD International conference on Management of data (SIGMOD). ACM Press,
Denver, Colorado, 78–87. https://doi.org/10.1145/115790.115799

https://doi.org/10.14778/2752939.2752940
https://doi.org/10.1145/3318464.3380586
https://doi.org/10.1145/115790.115799

	Abstract
	1 Introduction
	2 Stream computations
	2.1 Streams and stream operators
	2.2 Streams over abelian groups
	2.3 Integration and differentiation

	3 Incremental view maintenance
	4 IVM for the Relational Algebra
	4.1 Z-sets as an abelian group
	4.2 Implementing relational operators
	4.3 Incremental view maintenance
	4.4 Complexity of incremental circuits
	4.5 Relational Query Example

	5 Recursive queries
	5.1 Implementing recursive queries

	6 Incremental recursive programs
	6.1 Cost of incremental recursive queries

	7 DBSP and richer query languages
	7.1 Multisets and bags
	7.2 Aggregation
	7.3 Grouping; indexed relations
	7.4 GROUP BY-AGGREGATE, flatmap
	7.5 Streaming joins
	7.6 Relational while queries

	8 Implementation
	9 Related work
	10 Conclusions
	References

