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Abstract

Systems such as MapReduce have become enormously popular for pro-
cessing massive data sets since they substantially simplify the task of writ-
ing many naturally parallelizable parallel programs. In this paper we iden-
tify the computations carried out by such programs as linear transforma-
tions on distributed collections. To this end we model collections as multi-
sets with a union operation, giving rise to a commutative monoid structure.
The results of the computations (e.g., filtering, reduction) also lie in such
monoids, (e.g., multisets with union, or the natural numbers with addi-
tion). The computations are then modelled as linear (i.e., homomorphic)
transformations between the commutative monoids. Binary computations
such as join are modelled in this framework by multilinear transformations,
i.e., functions of several variables, linear in each argument.

We present a typed higher-order language for writing multilinear trans-
formations; the intention is that all computations written in such a pro-
gramming language are naturally parallelizable. The language provides a
rich assortment of collection types, including collections whose elements
are negatively or fractionally present (in general it permits modules over
any given semiring). The type system segregates computations into linear
and nonlinear phases, thereby enabling them to “switch” between different
commutative monoids over the same underlying set (for example between
addition and multiplication on real numbers). We use our language to de-
rive linear versions of standard computations on collections; we also give
several examples, including a linear version of MapReduce.

1 Introduction

As has been famously demonstrated by MapReduce, Dean and Ghemawat (2004),
and followed up by related systems, such as DryadLINQ, Yu et al. (2008), big data
computations can be accelerated by using massive parallelism. Parallelization is
justified for simple mathematical reasons: big data has a natural commutative
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monoid structure with respect to which the transformations carried out by com-
putations are linear (i.e., homomorphic). We present a programming language
which seeks to expose this linearity; we intend thereby to lay the foundations for
(multi)linear programming with big data.

Our language manipulates two kinds of types: ordinary and linear. In our
setting linear types are commutative monoids (i.e., sets with a commutative as-
sociative operation with a zero). A typical example of such a monoid is provided
by the positive reals R+ with addition.

Big data is usually manipulated as collections; these are unordered bags, or
multisets, of values (sometimes represented as lists); we write X? for the type of
collections of elements of a set X. While the elements of a collection may be from
an ordinary type, the collection type itself is a commutative monoid if endowed
with multiset union (indeed X? is the free commutative monoid over X).

Turning to transformations, given a function f : X → Y between ordinary
types the Map operator yields a transformation Map(f) : X? → Y ? mapping
X-collections to Y -collections. Again, given g : Y → R+, the Reduce operator
yields a transformation Reduce(g) : Y ? → R+ mapping Y -collections to R+.
Both of these are linear, preserving the monoid structures, i.e., we have:

Map(f)(∅) = ∅ Map(f)(c ∪ c′) = Map(f)(c) ∪Map(f)(c′)
Reduce(g)(∅) = 0 Reduce(g)(c ∪ c′) = Reduce(g)(c) + Reduce(g)(c′)

(In fact, since X? is the free commutative monoid over X, these are the unique
such maps extending f and g, respectively.)

These equations justify the use of parallelism. For example, the linearity of
Map implies that one can split a collection into two parts, map them in parallel,
and combine the results to obtain the correct result.

As another example, suppose we have a binary tree of processors, and a col-
lection c partitioned across the leaves of the tree. We map and then reduce at
the leaves, and then reduce the results at the internal nodes. The final result is
Reduce(g)(Map(f)(c)) irrespective of the data distribution at leaves, and of the
shape of the tree. This fact depends on both the associativity and commutativity
of the monoid operations and the linearity of the transformations; in practice this
translates into the ability to do arbitrary load balancing of computations.

Our language is typed and higher-order. The language accommodates binary
functions, such as joins, which have multilinear types (they are linear in each
of their arguments). The language provides rich collection type constructors:
in particular, for any linear types A and (certain) ordinary types X, we can
construct the linear type A[X] whose elements can be thought of variously as
A-ary X-collections, or as key-value dictionaries, with X as the type of keys (or
indices) and A as the type of values.
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For example, by taking A to be the integers, we obtain multisets with el-
ements having positive and negative counts; these are useful in modelling dif-
ferential dataflow computations, see McSherry et al. (2013). Taking A to be
the nonnegative reals, we obtain weighted collections, which are useful for mod-
elling differential privacy, see Prospero et al. (2014). Dictionaries enable one
to express GroupBy computations. The language further provides a mechanism
for programming computations with both linear and nonlinear phases, possibly
switching between different commutative monoids over the same carrier.

In the rest of this paper, after some remarks on commutative monoids, we
present the syntax and denotational semantics of our language. We then ar-
gue practicality by modelling MapReduce and LINQ distributed computations
through a series of examples (see Meijer et al. (2006) for an account of LINQ).

2 Remarks on commutative monoids

We work with commutative monoids M = (|M |,+, 0) and linear (i.e., homomor-
phic functions) between them. We write U(M) for |M |, the carrier of M (i.e.,
its underlying set). For any n ∈ N and m ∈ M we write nm for the sum of m
with itself n times.

The product of two commutative monoids is another, with addition and zero
defined coordinatewise. Various sets of functions with range a commutative
monoid M also form commutative monoids, with addition and zero defined point-
wise. Examples include: M [X] the monoid of all functions from a given set X
to M which are zero except, possibly, at finitely many arguments; X → M , the
monoid of all functions from a given set X to M ; and M1, . . . ,Mn ( M the
monoid of all multilinear functions from given commutative monoids M1, . . . ,Mn

to M . We write a typical element of A[X] with value 0 except possibly at n
arguments x1, . . . , xn as {x1 7→ a1, . . . , xn 7→ an}.

Categorically, U is (the object part of) the forgetful functor to the category
of sets. The product of two commutative monoids is also their sum, and so we
employ the biproduct notation M1 ⊕ M2. The commutative monoid M [X] is
the categorical sum

∑
x∈X M and can also be viewed as the tensor X ⊗M (the

corresponding cotensor is X →M).
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X = Y

Y = X
b = b |c| = U(c)

X = Y X ′ = Y ′

X ×X ′ = Y × Y ′
A = B

U(A) = U(B)

X = X ′ Y = Y ′

X → Y = X ′ → Y ′

X = U(A) Y = U(B)

X × Y = U(A⊕B)

X = X ′ Y = U(A)

X → Y = U(X ′ → A)

Figure 1: Definitional equality rules for ordinary types.

c = c
A = A′ B = B′

A⊕B = A′ ⊕B′
A = A′ X = X ′

A[X] = A′[X ′]

X = X ′ A = A′

X → A = X ′ → A′

#»

A =
# »

A′ B = B′

#»

A ( B =
# »

A′ ( B′

Figure 2: Definitional equality rules for linear types.

3 The language

Types

The language has two kinds of type expressions: ordinary and linear, ranged over
by X, Y, . . . and A,B, . . ., respectively. They are given by:

X ::= b | X × Y | U(A) | X → Y

A ::= c | A⊕B | A[X] | X → B | A1, . . . , Am ( B

where b and c range over given basic ordinary and linear types, respectively. The
basic ordinary types always contain bool and nat. The basic linear types always
contain nat+; other possibilities are natmax and real+. In A[X] we restrict X to
be an equality type, meaning one not containing any function types.

We also assume given a syntactic carrier function | · |, mapping basic linear
types c to basic ordinary types |c|. For example |nat+| = |natmax| = nat. This
is used to obtain a notion of definitional equality of types which will enable
computations to move between different linear structures on the same carrier;
the rules for definitional equality are given in Figures 1 and 2; note the use there
of vector notation for sequences of linear types.
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Semantics of Types

Ordinary types X denote sets [|X|] and linear types A denote commutative mon-
oids [|A|]. The denotations of basic type expressions are assumed to be given. For
example, bool and nat would denote, respectively, the booleans and the natural
numbers; nat+, would denote the natural numbers with addition; and natmax

and real+ would denote the natural numbers with maximum, and the reals with
addition. We assume, for any basic linear type c that [||c||] is U([|c|]) the carrier
of [|c|].

The other type expressions have evident denotations. For example [|X → Y |]
is the set of all functions from [|X|] to [|Y |]; [|U(A)|] is U([|A|]); [|A[X]|] is [|A|][[|X|]];
[|A1, . . . , An ( B|] is [|A1|], . . . , , [|An|] ( [|B|]; and so on. One can check that
definitionally equal types have equal denotations.

Terms

The language has ordinary terms ranged over by t, u, . . . and multilinear terms
ranged over by M,N, . . .. They are given by:

t ::= x | dX(M) | f(t1, . . . , tn) |
〈t, u〉 | fst(t) | snd(t) |
λx : X. t | t(u)

M ::= a | uA(t) | g(M1, . . . ,Mn) |
0A |M +N |MN |
if t then M else N | matchx : X, y : Y as t in M |
〈M,N〉 | fst(M) | snd(M) |
M · t | sum a : A, x : X in M.N |
λx : X.M |M(t) |
λa1 : A1, . . . , an : Am.M |M(N1, . . . , Nn)

In the above we use the letters x, y, . . . , a, b . . . to range over variables. In
the “match” construction x, y have scope extending over M ; and in the “sum”
construction a, x have scope extending over N . We assume given two signatures:
one of ordinary basic functions f : b1, . . . , bn → b and the other of linear basic
functions g : c1, . . . , cn → c.

We introduce three “let” constructions as standard syntactic sugar:

let x : X be t in u =def (λx : X. u)(t)
let x : X be t in M =def (λx : X.M)(t)

let #»a :
#»

A be
# »

M in N =def (λ #»a :
#»

A.N)(
# »

M)
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Instead of sum a : A, x : X in M.N : B we may write in a more “mathemati-
cal” way: ∑

a·x∈M

N

Finally we may write unary function applications M(N) in an “argument-first”
manner, as N.M , associating such applications to the left.

Environments

The language has ordinary environments ranged over by Γ and multilinear en-
vironments ranged over by ∆. These environments are sequences of variable
bindings of respective forms:

Γ ::= x1 : X1, . . . , xm : Xn ∆ ::= a1 : A1, . . . , an : An

where the xi are all different, as are the aj. Below we write ∆||∆′ for the set of
all merges (interleavings) of the two sequences of variable bindings ∆ and ∆′.

Typing Rules

We have two kinds of judgements, ordinary and multilinear

Γ ` t : X and Γ | ∆ `M : A

where, in the latter, Γ and ∆ have no variables in common. The rules are either
structural, casting, ordinary, or multilinear, and are as follows:

Structural

Γ, x : X,Γ′ ` x : X Γ | a : A ` a : A

Casting

Γ | `M : A U(A) = X

Γ ` dX(M) : X

Γ ` t : X X = U(A)

Γ | ` uA(t) : A

Ordinary

Γ ` #»
t :

#»

b

Γ ` f(
#»
t ) : b

(f :
#»

b → b)

Γ ` t : X Γ ` u : Y

Γ ` 〈t, u〉 : X × Y
Γ ` t : X × Y
Γ ` fst(t) : X

Γ ` t : X × Y
Γ ` snd(t) : Y
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Γ, x : X ` t : Y

Γ ` λx : X. t : X → Y

Γ ` t : X → Y Γ ` u : X

Γ ` t(u) : Y

Linear

Γ | ∆i `Mi : ci (i = 1, n)

Γ | ∆ ` g(M1, . . . ,Mn) : c
(g : c1, . . . , cn → c,∆ ∈ ∆1|| . . . ||∆n)

Γ | ∆ ` 0A : A
Γ | ∆ `M : A Γ | ∆ ` N : A

Γ | ∆ `M +N : A

Γ | ∆′ `M : nat+ Γ | ∆′′ ` N : A

Γ | ∆ `MN : A
(∆ ∈ ∆′||∆′′)

Γ ` t : bool Γ | ∆ `M : A Γ | ∆ ` N : A

Γ | ∆ ` if t then M else N : A

Γ ` t : X × Y Γ, x : X, y : Y | ∆ `M : A

Γ | ∆ ` matchx : X, y : Y as t in M : A

Γ | ∆ `M : A Γ | ∆ ` N : B

Γ | ∆ ` 〈M,N〉 : A⊕B
Γ | ∆ `M : A⊕B
Γ | ∆ ` fst(M) : A

Γ | ∆ `M : A⊕B
Γ | ∆ ` snd(M) : B

Γ | ∆ `M : A Γ ` t : X

Γ | ∆ `M · t : A[X]

Γ | ∆′ `M : A[X] Γ, x : X | ∆′′, a : A ` N : B

Γ | ∆ ` sum a : A, x : X in M.N : B
(∆ ∈ ∆′||∆′′)

Γ, x : X | ∆ `M : B

Γ | ∆ ` λx : X.M : X → B

Γ | ∆ `M : X → B Γ ` t : X

Γ | ∆ `M(t) : B

Γ | ∆, #»a :
#»

A `M : B

Γ | ∆ ` λ #»a :
#»

A.M :
#»

A ( B

Γ | ∆′ `M : A1, . . . , An ( B Γ | ∆i ` Ni : Ai (i = 1, n)

Γ | ∆ `M(N1, . . . , Nn) : B
(∆ ∈ ∆′||∆1|| . . . ||∆n)

The use of the merge operator || on linear environments ensures that derivable
typing judgments are closed under permutation of linear environments; as may be
expected, they are not closed under weakening or duplication. Typing is unique
in that for any Γ, ∆ and M there is at most one A such that Γ | ∆ `M : A and
similarly for judgments Γ ` t : X. There is also a natural top-down type-checking
algorithm.

We sketch the denotational semantics of terms below, but their intended mean-
ing should be clear from the previous section. For example, the term MN with
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M : nat+ indicates the addition of N with itself M times. The terms dX(M) and
uA(t) should be read as “down” and “up” casts, which convert back and forth
between a linear type A and an ordinary type X definitionally equal to U(A).
Using terms of the forms dX(M), uA(t) one can construct conversions between
any two definitionally equal types.

Some constructions that may seem missing from the biproduct are in fact
definable. The first injection inl(M) can be defined by 〈M, 0〉, similarly for the
second, and we can define a cases construction by:

cases K fst a : A.M, snd b : B.N =def let c : A⊕B be K in
(let a : A be fst(c) in M)

+ (let b : B be snd(c) in N)

So given “product” and “plus” we get “sum”; in fact, given any two of “prod-
uct”, “sum”, and “plus” one can define the third.

Semantics of terms

For the basic functions, f , g, one assumes available given functions [|f |], [|g|] of
suitable types.

For environments Γ = x1 : X1, . . . , xm : Xm and ∆ = a1 : A1, . . . , an : An, we
write [|Γ|] for the set [|X1|]× . . .× [|Xm|], and [|∆|] for the carrier of [|A1|]× . . .× [|An|],
respectively. Then, much as usual, the denotational semantics assigns to each
typing judgement Γ ` t : Y a function

[|Γ ` t : Y |] : [|Γ|] −→ [|Y |]

and to each typing judgement Γ | ∆ `M : B a function

[|Γ | ∆ `M : B|] : [|Γ|]× [|∆|] −→ [|B|]

linear in each of the ∆ coordinates (this is why ∆ is called a “multilinear environ-
ment”). The definition is by structural definition on the terms; we just illustrate
a few cases.

The type conversions are modelled by the identity function, for example:

[|Γ | ` dX(M) : X|]( #»v , #»α) = [|Γ `M : A|]( #»v )

As one might expect the syntactic monoid operations are modelled by the seman-
tic ones, for example:

[|Γ | ∆ `M+N : B|]( #»v , #»α) = [|Γ | ∆ `M : B|]( #»v , #»α) +[|B|] [|Γ | ∆ ` N : B|]( #»v , #»α)
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For the collection syntax we have first that:

[|Γ | ∆ `M · t : A[X]|]( #»v , #»α) = {[|Γ ` t : X|]( #»v ) 7→ [|Γ | ∆ `M : A|]( #»v , #»α)}

Next if Γ | ∆ ` sum a : A, x : X in M.N : X holds then there are, necessarily
unique, ∆′,∆′′ such that Γ | ∆′ ` M : A[X] and Γ, x : X | ∆′′, a : A ` N : B
and ∆ ∈ ∆′||∆′′ all hold. We use the fact that ∆ ∈ ∆′||∆′′ to obtain canonical
projections π′ : [|∆|]→ [|∆′|] and π′′ : [|∆|]→ [|∆′′|].

Suppose that

[|Γ | ∆′ `M : A[X]|]( #»v , π′( #»α)) = {v1 7→ a1, . . . , vn 7→ an}

Then

[|Γ | ` sum a : A, x : X in M.Nt : X|]( #»v , #»α) =∑
i=1,n[|Γ, x : X | ∆′′, a : A ` N : B|](( #»v , vi), (π

′′( #»α), ai))

The semantics of the other terms pose no surprises; in cases where linear envi-
ronments ∆ are split up, one again makes use of canonically available projections.

Implementation considerations

It very much remains to be seen how useful our ideas prove. In the meantime,
it seems worthwhile saying a little about possible implementation datatypes.
One could use lists, possibly spread among different processors, to represent
collections. Representations would be recursively defined: if R represented X,
and S represented the carrier of A then (R × S)∗ could represent A[X], with
(r1, s1) . . . (rn, sn) representing

∑
i=1,n{xi 7→ ai} if ri, si represented xi, ai, for all

i ∈ {1, . . . , n}.
Such representations have a natural normal form: assuming the ri and si

are already in normal form, one adds the si together (using a representation of
addition on A) to produce a list (r′1, s

′
1), . . . , (r

′
n, s
′
n) with the r′j all different, and

then orders the list using a total ordering of S, itself recursively defined.
When evaluating uA(t) one needs to have the value of t in normal form, as

otherwise the addition implied by the representation relation is that of A, which
may not generally be correct (for example, t may itself be dX(M) where the
(linear) type of M has a different addition from that of A). So when evaluating
dX(M), one should put the value of M into normal form as the correct addition
is then known from the linear type of M .
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4 Operators

As stated above, the type A[X] can be regarded variously as that of A-valued
X-collections or of key-value dictionaries over A and indexed by X. In particular,
taking A to be nat+ we get the usual unordered collections, i.e., finite multisets
of elements of X; we write this type as X?. We now look at linear versions
of standard operators such as Map, Fold, Reduce, GroupBy, and Join. As our
notion of collection is more general than that used in traditional programming
languages we obtain corresponding generalisations of these operators.

Map

We can define a family of Map operators which operate on both the elements of
a collection and their coefficients. Associating function type arrows to the right,
they have type

(A( B) ( (X → Y )→ (A[X] ( B[Y ])

and are given by:

MapX,Y,A,B =def λf : (A( B). λg : (X → Y ). λc : A[X].
∑
a·x∈c

f(a) · g(x)

where we are making use of the summation notation introduced above. Note that
here, and below, operators are often linear in their function arguments.

Specialising to the case where B = A and f : A( B is the identity idA (i.e.,
λa : A. a), we obtain a family of operators

MapX,Y,A : (X → Y )→ (A[X] ( A[Y ])

where we are overloading notation. When A = nat+ these are the usual Map
operators, but with their linearity made explicit in their type:

(X → Y )→ (X? ( Y ?)

Actions and their extensions

We define an action (term) of a linear type A on another B to be a term of
type A,B ( B. Such an action always exists when A = nat+, viz., the term
λn : nat+, b : B. nb. In general, we may only be given “multiplication” terms
mA : A,A ( A providing an action of A on itself; we may then, as we will see
below, use the given multiplication to obtain actions on other linear types.
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For example in the case of real+, the multiplication term would denote the
usual multiplication on the positive reals. When we have a multiplication term
on a linear type A we may also have a “unit” term 1A : A (e.g., a term denoting
the usual unit in the case of the positive reals). The unit provides a generalisation
of the multiset singleton map {−} : X → X?, namely λx : X. 1Ax : X → A[X].1

Given an action of A on B we can obtain an action of A on B[X] using a
family of Extend operators. They have type

(A,B ( B) ( (A,B[X] ( B[X])

and are given by:

ExtendX,A,B =def λf : (A,B ( B). λa : A, c : B[X].
∑
b·x∈c

f(a, b) · x

Actions can be extended to other types. In the case of biproducts, given an
action of A on both B and C, then there is an action of A on B ⊕C; in the case
of function types, given an action of A on C, there are actions of A on X → C
and

#»

B ( C. We leave their definition as an exercise for the reader. Combining
such extensions, one can build up actions on complex datatypes.

Folding

We define a family of Fold operators with type

(A,B ( B), (X → B) ( (A[X] ( B)

They are given by:

FoldX,A,B =def λm : (A,B ( B), f : X → B. λc : A[X].
∑
a·x∈c

m(a, f(x))

Note that the fold operator needs an action of of A on B.

SelectMany Using Fold we can define a family of SelectMany operators that
generalise those of LINQ analogously to the above Map operators. They have
type

(A( B), (X → B[X]) ( (A[X] ( B[X])

1We would expect such a multiplication and unit to make A a semiring (i.e., to provide a
bilinear associative multiplication operation with a unit) and we would expect the actions of
A on other linear types to make them A-modules. If such algebraic assumptions are fulfilled,
some natural program equivalences hold.
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and are given by:

SelectManyX,A,B = λf : A( B, g : X → B[X]. λc : A[X].
let e : A,B[X] ( B[X] be

Extend(λa : A, b : B.mB(f(a), b))
in c.Fold(e, g)

where we have made use of the reverse application notation introduced above,
and have also assumed available a multiplication term mB : B,B ( B.

Taking B = A and specialising f : A( B to the identity, we obtain a family
of operators of types

SelectManyX,A : (X → A[X]) ( (A[X] ( A[X])

again overloading notation. When A = nat+ these have type

(X → X?) ( (X? ( X?)

and are the usual LINQ SelectMany operators (these are the same as MapRe-
duce’s improperly-named Map operators).

Reduction For general A-valued collections, we may already regard Fold as a
reduction (or aggregation) operator. We can obtain analogues of the more usual
reductions by taking both A and B to be basic linear types where there is an
action of A on B; an example would be to take them both to be real+ and the
action to be mreal+ .

We can specialise the first argument of Fold to the action of nat+ on linear
type’s B and obtain a family of operators

ReduceX,B : (X → B) ( (X? ( B)

In this generality, these include SelectMany, if we take B to be Y ?. Taking B to
be a basic linear type such as real+ we obtain more usual reductions.

Note that in all the cases considered above, the reduction operations are fixed
to be the sum operations of the target linear types.

GroupBy

As already indicated, one can regard elements of the linear type A[X] as key-value
dictionaries of elements of A, indexed by elements of X. In particular, given a
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type of keys K, we can regard A[X][K] as the type of K-indexed A-valued X-
collections. With this understanding, we have a family of GroupBy operators
using of key function X → K. These have type

(X → K)→ (A[X] ( A[X][K])

and are given by:

GroupByK,X,A = λk : (X → K). λc : A[X].
∑
a·x∈c

(ax) · k(x)

Lookup

Lookup functions extract the element with a given key from a K-indexed dictio-
nary. They have type

K → (A[K] ( A)

and are given by:

LookupK,X,A =def λx : K.λc : A[K].
∑
a·x′∈c

if x′ = x then a else 0

where we have assumed available an equality function on K.

Join

We first define cartesian product operations on collections; they require actions
of linear types on themselves in order to combine values with the same index. We
have a family of operations of type

(A,A( A), A[X], A[Y ] ( A[X × Y ]

given by:

CartProdX,A =def λm : A,A( A, c : A[X], c′ : A[X].
∑
a·x∈c

∑
a′·y∈c′

m(a, a′) · 〈x, y〉

We further have a family of Join operations which operate on pre-grouped-
by collections, with a type of keys K for which an equality function is assumed
available. They have type

(A,A( A), A[X][K], A[Y ][K] ( A[X × Y ][K]

and are given by:

JoinX,Y,K,A =def λm : (A,A( A), d : A[X][K], d′ : A[Y ][K].∑
c·k∈d let c′ : A[Y ] be Lookup(k)(d′) in CartProd(m, c, c′) · k
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Zip

Our final example is another family of binary functions on key-value dictionaries,
which model the LINQ Zip operation:

ZipX,A,B : A[X]⊕B[X] ( (A⊕B)[X]

They take two X-indexed dictionaries and pair entries with the same index. They
are given by:

ZipX,A,B =def λd : A[X]⊕B[X].
Map(inl)(idX)(fst(d)) +A⊕B Map(inr)(idX)(snd(d))

equivalently:

ZipX,A,B =def λd : A[X]⊕B[X]. cases d fst a : A[X].Map(inl)(idX)(a),
snd b : B[X].Map(inr)(idX)(b)

5 Some Example Programs

In this section we give some example programs. The first two compute non-
linear functions. However they are composed from linear subcomputations, and
these are exposed as linear subterms. The last example is a linear version of
MapReduce.

5.1 Counting

Our first example illustrates the utility of being able to move non-linearly between
different monoids with the same carrier. Given a collection, we can count its
elements, taking account of their multiplicity, using CountX : X? ( nat+, given
by:

λc : X?.ReduceX,nat+(λx : X. unat+(1))(c)

However, if we instead want to count ignoring multiplicity (i.e., to find the number
of distinct elements), the computation proceeds in two linear phases separated
by a non-linear one, as follows:

• the input collection, read as a nat+-collection by a type conversion from an
ordinary to a linear type, is mapped to a natmax-collection c′ to record only
the presence or absence of an item (by a 1 or a 0),

• c′ is then transformed nonlinearly to a nat+-collection c′′, using the type
conversions, and, only then,
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• the Count function is applied to c′′.

To do this we use a term SetCountX : U(X?)→ nat+, namely

λx : U(X?).
let c′ : natmax[X] be uX?(x).Map(Conv)(idX) in
let c′′ : X? be uX?(dU(X?)(c

′)) in c′′.Count

where Conv : nat+ ( natmax is a linear term converting between nat+ and natmax,
namely λn : nat+. n(unatmax(1)) (it sends 0 to 0 and all other natural numbers to
1), and where we have dropped operator indices.

5.2 Histograms

Our second example is a simple histogram computation. Suppose we have a
collection c of natural numbers and wish to plot a histogram of them spanning
the range 0 to m, the maximum element in the collection (which we assume to be
> 0). The histogram is to have k > 0 buckets, starting at 0, so each bucket will
have width m/k. We model histograms by multisets of natural numbers, where
each element corresponds to a bucket, and has multiplicity corresponding to the
number of values in that bucket.

The following function Histkmax : nat → (nat? ( nat?) is provided the maxi-
mum element value and computes the histogram linearly over c:

λm : nat. λc : nat?. c.SelectMany(λn : nat. {bkn/mc})

The maximum element can be found linearly from c using a reduction:

c.Reduce(λn : nat. unatmax(n))

Putting these two together, we obtain a function Histk : nat? → nat? comput-
ing the required histogram:

λc : U(nat?).
let m : nat be dnat(unat?(c).Reduce(λn : nat. unatmax(n))) in
unat?(c).Histkmax(m)

Note the double occurrence of c, signalling nonlinearity.

5.3 A linear MapReduce

We present a linear version of MapReduce. It models the distributed nature of the
data by using a dictionary indexed by machine names to model partitioned collec-
tions. The MapReduce computation begins with the initial collection distributed
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over the machines, carries out a computation in parallel on each machine, redis-
tributes the data between the machines by a shuffle operation, and then performs
a final reduction.

We begin with the computation carried out on each machine. This applies to
a collection c, and consists of a SelectMany, then a GroupBy using a basic type
K of keys, and then a Reduce at each key. It is given by the following term MR:

λc : X?. c.SelectMany(m).GroupBy(k).Map(Reduce(r))(idK)

which has typing:

k : Y → K | m : X → Y ?, r : Y → A ` MR : X? ( A[K]

We next need to model data of any given type B spread across machines. To
do this we assume available a basic type M of machine names and model such
data by an M-indexed dictionary of type B[M]. With this in mind the parallel
computation is given by the following term PMR:

Map(MR)(idM)

which maps MR across the machines and which has typing

k : Y → K | m : X → Y ?, r : Y → A ` PMR : X?[M] ( A[K][M]

The shuffle operation employs a key-to-machine function, h : K → M, and is
given by the following term SH:

λe : A[K][M].
sum d : A[K],m : M in e.
sum a : A, k : K in d. ({a} · k) · h(k)

which has typing:

h : K→ M | ` SH : A[K][M] ( A?[K][M]

The final reduction is carried out in parallel on each machine and is given by
the following term FR:

Map(Map(Reduce(idA))(idK))(idM)

which maps the reduction at each key across the machines and which has typing

` FR : A?[K][M] ( A[K][M]
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Putting everything together we obtain the entire MapReduce computation.
It is given by the following term MapReduce:

λb : X?[M]. b.PMR.SH.FR

which has typing:

k : Y → K, h : K→ M | f : X → Y ?, r : Y → A ` MapReduce : X?[M] ( A[K][M]

One could evidently abstract on the various functions, or choose specific ones.

6 Discussion

One can imagine a number of extensions and developments. Most immediately,
as well as rules for type-checking, one would like an equational system, as is usual
in type theories. This would open up the possibility of proving programs such
as MapReduce correct. Regarding the language design, the reduction facilities
depend on the built-in monoid structures. However in, e.g., LINQ, programmers
can choose their own. In order to continue exposing linearity, it would be natural
to introduce linear types of the form (X, z,m) where z : X and m : X2 → X are
intended to provide X with a commutative monoid structure.

The mathematics suggests further possibilities. For example when working
with A-valued collections (but not dictionaries) it is natural to suppose one has
a semiring structure on A. Perhaps it would be worthwhile to add a kind of
semirings (possibly even programmable) and to have separate linear types of
collections and dictionaries.

Again, commutative monoids have a tensor product A⊗B classifying bilinear
functions. One wonders if this would provide a useful datatype for big data pro-
gramming. The tensor product enjoys various natural isomorphisms, for example:
A[X]⊗B[Y ] ∼= (A⊗B)[X × Y ], in particular X? ⊗ Y ? ∼= (X × Y )?.

The mathematics suffers if one were to drop commutativity, and just work
with monoids, as in Nesl — see Blelloch (2011). One no longer has linear function
spaces or tensor products. However it is not clear that one would not thereby
enjoy benefits for programming with big data.

There are yet other possibilities for further development. It would be useful
to add probabilistic choices to the language, however the interaction between
probability and linearity is hardly clear. It would be interesting to consider
differential aspects, as in McSherry et al. (2013). This would involve passing from
monoids and semirings to abelian groups and rings. Compilers might well benefit
from language facilities to indicate intended parallelism; an example is the use of
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machine-indexed collections used above to model MapReduce. One could imagine
a programmer-specified machine architecture, with machine-located datatypes
A@m, see Jia and Walker (2004) and Murphy VII (2008).
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